Skip to main content

Statistical Mechanics and Ergodic Theory

  • Chapter
  • First Online:
Stochastic Models, Information Theory, and Lie Groups, Volume 2

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 4310 Accesses

Abstract

The purpose of this chapter is to tie together a number of concepts that have been presented earlier. Stochastic models and information-theoretic quantities such as entropy are not disjoint concepts. They overlap nicely in the context of statistical mechanics, where stochastic models describe general classes of equations of motion of physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R.L., Konheim, A.G., McAndrew, M.H., “Topological entropy,” Trans. Am. Math. Soc., 114(2), pp. 309–319, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, Oxford, 1987.

    Google Scholar 

  3. Arnol’d, V.I., Avez, A., Ergodic Problems of Classical Mechanics, W.A. Benjamin, New York, 1968.

    Google Scholar 

  4. Auslander, L.,Green, L., Hahn, F., Flows on Homogeneous Spaces, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1963.

    Google Scholar 

  5. Beck, T.L., Paulaitis, M.E., Pratt, L.R., The Potential Distribution Theorem and Models of Molecular Solutions, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  6. Bekka, M.B., Mayer, M., Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  7. Bennett, C.H., “The thermodynamics of computation—a review,” Int. J. Theor. Phys., 12, pp. 905–940, 1982.

    Article  Google Scholar 

  8. Billingsley, P., Ergodic Theory and Information, Robert E. Krieger Publishing Co., Huntington, NY, 1978.

    Google Scholar 

  9. Birkhoff, G.D.,“Proof of the ergodic theorem,” Proc. Natl. Acad. Sci. USA 17, pp. 656– 660, 1931.

    Article  Google Scholar 

  10. Bismut, J.-M., M´ecanique Al´eatoire, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  11. Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, 2nd revised ed., Chazottes, J.-R. ed., Lecture Notes in Mathematics 470, Springer, Berlin, 2008.

    Google Scholar 

  12. Brillouin, L., Science and Information Theory, 2nd ed., Academic Press, New York, 1962.

    Google Scholar 

  13. Bud´o, A., Fischer, E., Miyamoto, S., “Einflusder Molek¨ulform auf die dielektrische Relaxation,” Physikal. Zeitschr., 40, pp. 337–345, 1939.

    Google Scholar 

  14. Bunimovich, L.A., Dani, S.G., Dobrushin, R.L., Jakobson, M.V., Kornfeld, I.P., Maslova, N.B., Pesin, Ya. B., Sinai, Ya. G., Smillie, J., Sukhov, Yu. M., Vershik, A.M., Dynamical Systems, Ergodic Theory, and Applications, 2nd ed., Encyclopaedia of Mathematical Sciences Vol. 100, Springer-Verlag Berlin, 2000.

    Google Scholar 

  15. Chandler, D., Andersen, H.C., “Optimized cluster expansions for classical fluids. II. Theory of molecular liquids,” J. Chem. Phys., 57(5), pp. 1930–1937, 1972.

    Article  Google Scholar 

  16. Chirikjian, G.S., Wang, Y.F., “Conformational statistics of stiff macromolecules as solutions to PDEs on the rotation and motion groups,” Phys. Rev. E, 62(1), pp. 880–892, 2000.

    Article  Google Scholar 

  17. Chirikjian, G.S., “Group theory and biomolecular conformation, I. Mathematical and computational models,” J. Phys.: Condens. Matter. 22, 323103, 2010.

    Google Scholar 

  18. Choe, G.H., Computational Ergodic Theory, Springer, New York, 2005.

    Google Scholar 

  19. Crooks, G.E., “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences,” Phys. Rev. E, 60, pp. 2721–2726, 1999.

    Article  Google Scholar 

  20. Dill, K.A., Bromberg, S., Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology, Garland Science/Taylor and Francis, New York, 2003.

    Google Scholar 

  21. Evans, D.J., Morriss, G., Statistical Mechanics of Nonequilibrium Liquids, 2nd ed., Cambridge University Press, Cambridge, 2008

    Google Scholar 

  22. Farquhar, I.E., Ergodic Theory in Statistical Mechanics, Interscience Publishers/JohnWiley and Sons, New York, 1964.

    Google Scholar 

  23. Favro, L.D., “Theory of the rotational Brownian motion of a free rigid body,” Phys. Rev., 119(1), pp. 53–62, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  24. Feig, M., ed., Modeling Solvent Environments: Applications to Simulations and Biomolecules, Wiley–VCH, Weinheim, 2010.

    Google Scholar 

  25. Feynman, R.P., Feynman Lectures on Computation, T. Hey and R.W. Allen, eds., Westview Press, Boulder, Colorado, 1996.

    Google Scholar 

  26. Frieden, B.R., Physics from Fisher Information, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  27. Furry, W.H., “Isotropic rotational Brownian motion,” Phys. Rev., 107(1), pp. 7–13, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  28. Gibbs, J.W., Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics, 1902 (reissued by Kessinger Publishing and BiblioBazaar, 2008).

    Google Scholar 

  29. Gray, C.G., Gubbins, K.E., Theory of Molecular Fluids, Vol. 1: Fundamentals, Clarendon Press, Oxford, 1984.

    Google Scholar 

  30. Gray, R. M., Davisson, L.D., eds., Ergodic and Information Theory, Benchmark Papers in Electrical Engineering and Computer Science Vol. 19, Dowden, Hutchinson and Ross, Stroudsburg, PA, 1977.

    Google Scholar 

  31. Halmos, P.R., Lectures on Ergodic Theory, The Mathematical Society of Japan, Tokyo, 1956.

    Google Scholar 

  32. Hansen, J.-P., McDonald, I.R., Theory of Simple Liquids, 3rd ed., Academic Press, New York, 2006.

    Google Scholar 

  33. Hill, T.L., An Introduction to Statistical Thermodynamics, Dover Publications, New York, 1960, 1986.

    Google Scholar 

  34. Hirata, F., ed., Molecular Theory of Solvation, Kluwer Academic Publishers, Dordrecht, 2003.

    Google Scholar 

  35. Huang, K., Statistical Mechanics, 2nd ed., John Wiley and Sons, New York, 1987.

    Google Scholar 

  36. Hubbard, P.S., “Angular velocity of a nonspherical body undergoing rotational Brownian motion,” Phys. Rev. A, 15(1), pp. 329–336, 1977.

    Article  MathSciNet  Google Scholar 

  37. Hummer, G., Szabo, A., “Free energy reconstruction from nonequilibrium single-molecule pulling experiments,” PNAS, 98(7), pp. 3658–3661, 2001.

    Article  Google Scholar 

  38. Jarzynski C., “Nonequilibrium equality for free energy differences,” Phys. Rev. Lett., 78, pp. 2690–2693, 1997.

    Article  Google Scholar 

  39. Jaynes, E.T., “Information theory and statistical mechanics, I+II,” Phys. Rev., 106(4), pp. 620–630, 1957; 108(2), pp. 171–190, 1957.

    Google Scholar 

  40. Jeffrey, G.B., “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. London. Series A, 102(Nov. 1), pp. 161–179, 1922.

    Google Scholar 

  41. Kac, M., Some Stochastic Problems in Physics and Mathematics, Colloquium Lectures in the Pure and Applied Sciences, Magnolia Petroleum Company, 1957.

    Google Scholar 

  42. Kaniuth, E., Ergodic and mixing properties of measures on locally compact groups, Lecture Notes in Mathematics, 1210, pp. 125–129, Springer, Berlin, 1986.

    Google Scholar 

  43. Khinchin, A.I., Mathematical Foundations of Statistical Mechanics, Dover Publications, New York, 1949.

    Google Scholar 

  44. Kim, M.K., Jernigan, R.L., Chirikjian, G.S., “Rigid-cluster models of conformational transitions in macromolecular machines and assemblies,” Biophys. J., 89(1), pp. 43–55, 2005.

    Article  Google Scholar 

  45. Kleinbock, D., Shah, N., Starkov, A., “Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory,” in Handbook of Dynamical Systems, Vol. 1A, B. Hasselblatt and A. Katok, eds., Chapter 11, pp. 813–930, Elsevier, Amsterdam, 2002.

    Google Scholar 

  46. Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, 2nd ed., World Scientific, Singapore, 1995.

    Google Scholar 

  47. Kolmogorov, A.N., “New metric invariant of transitive automorphisms and flows of Lebesgue spaces,” Dokl. Acad. Sci. USSR, 119(5), pp. 861–864, 1958.

    MathSciNet  MATH  Google Scholar 

  48. Landauer, R., “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev., 5, pp. 183–191, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  49. Landauer, R., “Dissipation and noise immunity in computation and communication,” Nature, 335, pp. 779–784, 1988.

    Article  Google Scholar 

  50. Leff, H.S., Rex, A.F., Maxwell’s Demon: Entropy, Information, Computing, Princeton University Press, Princeton, NJ, 1990.

    Google Scholar 

  51. Leff, H.S., Rex, A.F., Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing, Institute of Physics, Bristol, 2003.

    Google Scholar 

  52. MacDonald, D.K.C., Introductory Statistical Mechanics for Physicists, Dover Publications, Mineola, NY, 2006. (originally published by John Wiley and Sones in 1963).

    Google Scholar 

  53. Mackey, G. W., “Ergodic Theory and its significance for statistical mechanics and probability theory,” Adv. Math., 12, pp. 178–268, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  54. Ma˜n´e, R., Ergodic Theory and Differentiable Dynamics (translated from the Portuguese by Silvio Levy), Springer-Verlag, Berlin, 1987.

    Google Scholar 

  55. Margulis, G.A., Nevo, A., Stein, E.M., “Analogs ofWiener’s ergodic theorems for semisimple groups II,” Duke Math. J. 103(2), pp. 233–259, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  56. McConnell, J., Rotational Brownian Motion and Dielectric Theory, Academic Press, New York, 1980.

    Google Scholar 

  57. McLennan, J.A., Introduction to Non-Equilibrium Statistical Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1989.

    Google Scholar 

  58. Moore, C.C., “Ergodicity of flows on homogeneous spaces,”Am. J. Math. 88, pp. 154–178, 1966.

    Article  MATH  Google Scholar 

  59. Moser, J., Phillips, E., Varadhan, S., Ergodic Theory (A Seminar), Courant Institute, NYU, New York, 1975.

    Google Scholar 

  60. Nelson, E., Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, NJ, 1967.

    Google Scholar 

  61. Nevo, A., Stein, E.M., “Analogs of Wiener’s ergodic theorems for semisimple groups I,” Ann. Math., Second Series, 145(3), pp. 565–595, 1997.

    Google Scholar 

  62. Ornstein, D.S., Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, New Haven, CT, 1974.

    Google Scholar 

  63. Ornstein, L.S., Zernike, F., “Accidental deviations of density and opalescence at the critical point of a single substance,” Proc. Akad. Sci. (Amst.), 17, 793 (1914).

    Google Scholar 

  64. Parry, W., Topics in Ergodic Theory, Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  65. Pathria, R.K., Statistical Mechanics, Pergamon Press, Oxford, England, 1972.

    Google Scholar 

  66. Percus, J.K., Yevick, G.J., Phys. Rev., 110, 1 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  67. Percus, J.K., Phys. Rev. Letters, 8, 462 (1962).

    Article  Google Scholar 

  68. Perrin, F., “´Etude Math´ematique du Mouvement Brownien de Rotation,” Ann. Sci. L’ ´ Ecole Norm. Sup´erieure, 45, pp. 1–51, 1928.

    Google Scholar 

  69. Petersen, K., Ergodic Theory, Cambridge University Press, Cambridge, 1983.

    Google Scholar 

  70. Prigogine, I., Non-Equilibrium Statistical Mechanics, John Wiley and Sons, New York, 1962.

    Google Scholar 

  71. R´efr´egier, P., Noise Theory and Applications to Physics: From Fluctuations to Information, Springer, New York, 2004.

    Google Scholar 

  72. Rokhlin, V.A., “Lectures on the entropy theory of transformations with invariant measure,” Usp. Mat. Nauk. 22, pp. 3–56, 1967; Russ. Math. Surveys, 22, pp. 1–52, 1967.

    Google Scholar 

  73. Ruelle, D., “Ergodic theory of differentiable dynamical systems,” Publ. IHES, 50, pp. 275– 306, 1979.

    Google Scholar 

  74. Seife, C., Decoding the Universe, Penguin Books, New York, 2006.

    Google Scholar 

  75. Sinai, Ya. G., “On the notion of entropy of dynamical systems,” Dokl. Acad. Sci. USSR, 124(4), pp. 768–771, 1959.

    Google Scholar 

  76. Sinai, Ya. G., Introduction to Ergodic Theory (translated by V. Scheffer), Princeton University Press, Princeton, NJ, 1976.

    Google Scholar 

  77. Sinai, Ya.G., Topics in Ergodic Theory, Princeton University Press, Princeton, NJ, 1994.

    Google Scholar 

  78. Skliros, A., Chirikjian, G.S., “Positional and orientational distributions for locally selfavoiding random walks with obstacles,” Polymer, 49(6), pp. 1701–1715, 2008.

    Article  Google Scholar 

  79. Skliros, A., Park, W., Chirikjian, G.S., “Position and orientation distributions for nonreversal random walks using space-group Fourier transforms,” J. Alg. Statist., 1(1)

    Google Scholar 

  80. pp. 27–46, 2010.

    Google Scholar 

  81. Smoluchowski, M. v., “Uber Brownsche Molekular bewegung unter Einwirkung auszerer Krafte und deren Zusammenhang mit der verralgenmeinerten Diffusionsgleichung,” Ann. Phys., 48, pp. 1103–1112, 1915.

    Google Scholar 

  82. Steele, W.A., “Molecular reorientation in liquids. I. Distribution functions and friction constants. II. Angular autocorrelation functions,” J. Chem. Phys., 38(10), pp. 2404–2410, 2411–2418, 1963.

    Google Scholar 

  83. Sugita, Y., Okamoto, Y., “Replica-exchange molecular dynamics method for protein folding,” Chem. Phys. Lett., 314, pp. 141–151, 1999.

    Article  Google Scholar 

  84. Szilard, L., “On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings,” Zeit. Phys., 53, pp. 840–856, 1929 (in German, English translation in Quantum Theory and Measurement, J.A. Wheeler and W.H. Zurek, eds., pp. 539–548, Princeton University Press, Princeton, NJ, 1983).

    Google Scholar 

  85. Tao, T., “Time-dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules,” Biopolymers, 8(5), pp. 609–632, 1969.

    Article  Google Scholar 

  86. Templeman, A., Ergodic Theorems for Group Actions: Informational and Thermodynamical Aspects, Kluwer Academic Publishers, Dordrecht, 1992.

    Google Scholar 

  87. Tolman, R.C., The Principles of Statistical Mechanics, Dover Publications, New York, 1979.

    Google Scholar 

  88. Ulam, S.M., von Neumann, J., “Random ergodic theorems,” Bull. Am. Math. Soc., 51(9), p. 660, 1947.

    Google Scholar 

  89. von Neumann, J., “Proof of the quasi-ergodic hypothesis,” Proc. Natl. Acad. Sci. USA, 18, pp. 70–82, 1932.

    Article  Google Scholar 

  90. von Neumann, J., “Physical applications of the ergodic hypothesis,” Proc. Natl. Acad. Sci. USA, 18, pp. 263–266, 1932.

    Article  Google Scholar 

  91. Walters, P., An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

    Google Scholar 

  92. Weber, G., “Rotational Brownian motion and polarization of the fluorescence of solutions,” Adv Protein Chem., 8, pp. 415–459, 1953.

    Article  Google Scholar 

  93. Welecka, J.D., Fundamentals of Statistical Mechanics: Manuscript and Notes of Felix Bloch, Imperial College Press/World Scientific Publishing, London/Singapore, 2000.

    Google Scholar 

  94. Weyl, H., “Uber die Gleichverteilung von Zahlen mod 1,” Math, Ann. 77, pp. 313–352, 1916.

    MathSciNet  MATH  Google Scholar 

  95. Wiener, N., “The Ergodic theorem,” Duke Math. J., 5, pp. 1–18, 1939.

    Article  MathSciNet  Google Scholar 

  96. Wiener, N., Cybernetics: or Control and Communication in the Animal and the Machine, 2nd ed., The MIT Press, Cambridge, MA, 1961.

    Google Scholar 

  97. Zhou, Y., Chirikjian, G.S., “Conformational statistics of semi-flexible macromolecular chains with internal joints,” Macromolecules, 39(5), pp. 1950–1960, 2006.

    Article  Google Scholar 

  98. Zhou, Y., Chirikjian, G.S., “Conformational statistics of bent semiflexible polymers,” J. Chem. Phys., 119(9), pp. 4962–4970, 2003.

    Article  Google Scholar 

  99. Zimmer, R.J., Morris, D.W., Ergodic Theory, Groups, and Geometry. American Mathematical Society, Providence, RI, 2008.

    Google Scholar 

  100. Zuckerman, D.M., Woolf, T.B., “Efficient dynamic importance sampling of rare events in one dimension,” Phys. Rev. E, 63, 016702 (2000).

    Article  Google Scholar 

  101. Zurek, W.H. ed., Complexity, Entropy and the Physics of Information, Sante Fe Institute Studies in the Sciences of Complexity Vol. 8, Addison-Wesley, Reading, MA, 1990.

    Google Scholar 

  102. Zurek, W.H., “Thermodynamic cost of computation, algorithmic complexity, and the information metric,” Nature, 341, pp. 119–124, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chirikjian, G.S. (2012). Statistical Mechanics and Ergodic Theory. In: Stochastic Models, Information Theory, and Lie Groups, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4944-9_5

Download citation

Publish with us

Policies and ethics