Skip to main content

The Border Between Relativity and Quantum Theory

  • Chapter
  • First Online:
  • 1971 Accesses

Part of the book series: Einstein Studies ((EINSTEIN,volume 12))

Abstract

Many efforts have been made to fulfill Einstein’s dream of unifying general relativity and quantum theory, including the study of quantum field theory in curved space, supergravity, string theory, twistors, and loop quantum gravity. While all of these approaches have had notable successes, unification has not yet been achieved. After a brief tour of the progress which has been made, we focus on the role played by spinors in several of these approaches, suggesting that spinors may be the key to combining classical relativity with quantum physics. We conclude by outlining one possible generalization of traditional spinor language, involving the octonions, and speculate on its relevance to quantum gravity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnowitt, R., Deser, S. and Misner, C. W. (1962). The Dynamics of General Relativity. In Gravitation: An Introduction to Current Research. L. Witten, ed. New York:Wiley, 227–265.

    Google Scholar 

  • Ashtekar, Abhay (1986). New Variables for Classical and Quantum Gravity. Phys. Rev. Lett. 57, 2244–2247.

    Article  MathSciNet  Google Scholar 

  • —— (2012). The Issue of the Beginning in Quantum Gravity. Einstein and the Changing Worldviews of Physics. New York: Birkhäuser Science (Einstein Studies, Volume 12).

    Google Scholar 

  • Ashtekar, A. and Magnon, Anne (1975). Quantum Field Theory in Curved Space-Times. Proc. Roy. Soc. A346, 375–394.

    MathSciNet  Google Scholar 

  • Baylis, William E. (1999). Electrodynamics: A Modern Geometric Approach. Boston: Birkhäuser.

    Google Scholar 

  • Bergmann, Peter G. (1949). Non-Linear Field Theories. Phys. Rev. 75, 680–685.

    Article  MATH  MathSciNet  Google Scholar 

  • Bombelli, L., Lee, J., Meyer, D. and Sorkin, R. (1987). Spacetime as a Causal Set. Phys. Rev. 59, 521–524.

    MathSciNet  Google Scholar 

  • Bronstein, Matvey Petrovich (1933). K Voprosy o vozmozhnoy teorii mira kak tselogo. (On the Question of a Possible Theory of the World as a Whole.) Usp. Astron. Nauk Sb. 3, 3–30.

    Google Scholar 

  • Chamseddine, Ali H. and Connes, Alain (1996). Universal Formula for Noncommutative Geometry Actions: Unification of Gravity and the Standard Model. Phys. Rev. Lett. 77, 4868–4871.

    Article  MATH  MathSciNet  Google Scholar 

  • Davies, P. C. W. (1976). Scalar Particle Production in Schwarzschild and Rindler Metrics. J. Phys. A8, 609–616.

    Google Scholar 

  • DeWitt, Bryce S. (1964). Theory of Radiative Corrections for Non-Abelian Gauge Fields. Phys. Rev. Lett. 12, 742–746.

    Article  MathSciNet  Google Scholar 

  • —— (1967). Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 160, 1113–1148.

    MATH  Google Scholar 

  • Dirac, P. A. M. (1950). Generalized Hamiltonian Dynamics. Can. J. Math. Phys. 2, 129–148.

    Article  MATH  MathSciNet  Google Scholar 

  • Dray, Tevian and Manogue, Corinne A. (1999). The Exceptional Jordan Eigenvalue Problem. Int. J. Theor. Phys. 38, 2901–2916.

    Article  MATH  MathSciNet  Google Scholar 

  • —— (2000). Quaternionic Spin. In Clifford Algebras and their Applications in Mathematical Physics. Rafał Abłamowicz and Bertfried Fauser, eds. Boston: Birkhäuser, 29–46.

    Google Scholar 

  • Dray, Tevian, Renn, Jürgen and Salisbury, Donald C. (1983). Particle Creation with Finite Energy Density. Lett. Math. Phys. 7, 145–153.

    Article  MathSciNet  Google Scholar 

  • Einstein, Albert (1905a). U‥ ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17, 132–148.

    Article  Google Scholar 

  • ——(1905b). U‥ ber die von der molekularkinetischen Theorie derWärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–560.

    Google Scholar 

  • —— (1905c). Zur Elektrodynamik bewegter Körper. Ann. Phys. 17, 891–921.

    Google Scholar 

  • —— (1905d). Ist die Trägheit eines Körpers von seinem Energiegehalt abhängig? Ann. Phys. 18, 639–641.

    Google Scholar 

  • Fairlie, David B. and Manogue, Corinne A. (1986). Lorentz Invariance and the Composite String. Phys. Rev. D34, 1832–1834.

    MathSciNet  Google Scholar 

  • —— (1987). A Parameterization of the Covariant Superstring. Phys. Rev. D36, 475–479.

    MathSciNet  Google Scholar 

  • Feynman, R. (1963). Quantum Theory of Gravitation. Acta Phys. Pol. 24, 697.

    MathSciNet  Google Scholar 

  • Fulling, S. A. (1973). Nonuniqueness of Canonical Field Quantization in

    Google Scholar 

  • Riemannian Space-Time. Phys. Rev. D7, 2850–2862.

    Google Scholar 

  • Green, M. B. and Schwarz, J. H. (1984). Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory Requires SO(32). Phys. Lett. 149B, 117–122.

    MathSciNet  Google Scholar 

  • Hartle, J. B. and Hawking, S. W. (1983).Wave Function of the Universe. Phys. Rev. D28, 2960–2975.

    MathSciNet  Google Scholar 

  • Hawking, S. W. (1975). Particle Creation by Black Holes. Commun. Math. Phys. 43, 199–220.

    Article  MathSciNet  Google Scholar 

  • ’t Hooft, G. (1973). An Algorithm for the Poles at Dimension Four in the Dimensional Regularization Procedure. Nucl. Phys. B62, 444–460.

    Google Scholar 

  • Jacobson, T. and Smolin, L. (1988) Nonperturbative Quantum Geometries. Nucl. Phys. B299, 295–345.

    Article  MathSciNet  Google Scholar 

  • Jordan, P., von Neumann, J. and Wigner, E. (1934). On an Algebraic Generalization of the Quantum Mechanical Formalism. Ann. Math. 35, 29–64.

    Article  Google Scholar 

  • Karlhede, A. (1980). A Review of the Equivalence Problem. Gen. Rel. Grav. 12, 693–707.

    Article  MATH  MathSciNet  Google Scholar 

  • Manogue, Corinne A. and Dray, Tevian (1999). Dimensional Reduction. Mod. Phys. Lett. A14, 93–97.

    Google Scholar 

  • Manogue, Corinne A. and Sudbery, Anthony (1989). General Solutions of Covariant Superstring Equations of Motion. Phys. Rev. D40, 4073–4077.

    MathSciNet  Google Scholar 

  • Newman, Ezra T. and Penrose, Roger (1962). An Approach to Gravitational Radiation by a Method of Spin Coefficients. J. Math. Phys. 3, 566–768.

    Article  MathSciNet  Google Scholar 

  • Penrose, R. (1967). Twistor Algebra. J. Math. Phys. 8, 345–366.

    Article  MATH  MathSciNet  Google Scholar 

  • —— (1986). Gravity and State Vector Reduction. In Quantum Concepts in Space and Time. R. Penrose and C. J. Isham, eds. Oxford: Clarendon Press, 129–146.

    Google Scholar 

  • Renn, J. (2007). Classical Physics in Disarray: The Emergence of the Riddle of Gravitation. In The Genesis of General Relativity, vol. 1: Einsteins’s Zurich Notebook: Introduction and Source. Jürgen Renn, ed. Dordrecht: Springer, 31.

    Google Scholar 

  • Rovelli, Carlo (2004). Quantum Gravity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schray, Jörg (1996). The General Classical Solution of the Superparticle. Class. Quant. Grav. 13, 27–38.

    Article  MATH  MathSciNet  Google Scholar 

  • Smolin, Lee (2004). Private communication.

    Google Scholar 

  • Sparling, George A. J. (2006). Spacetime is spinorial; new dimensions are timelike. University of Pittsburgh preprint. http://xxx.lanl.gov/abstract/gr-qc/0610068.

    Google Scholar 

  • Stachel, John (1999). Space-Time Structures: What’s the Point. Proceedings of the Minnowbrook Symposium on the Structure of Space-Time (Blue Mountain Lake, NY; 5/28–31/99). http://physics.syr.edu/research/hetheory/minnowbrook/stachel.html.

    Google Scholar 

  • Unruh,W. G. (1976). Notes on Black Hole Evaporation. Phys. Rev. D14, 870–892.

    Google Scholar 

  • —— (2005). What is a Particle? Quantum Field Theory Meets General Relativity.

    Google Scholar 

  • Talk given at the 7th International Conference on the History of General Relativity, Tenerife.

    Google Scholar 

  • Wald, Robert M. (1994). Quantum Field Theory in Curved Spacetimes and Black Hole Thermodynamics. Chicago: University of Chicago Press.

    Google Scholar 

  • —— (2012). The History and Present Status of Quantum Field Theory in Curved

    Google Scholar 

  • Spacetime. Einstein and the Changing Worldviews of Physics. New York: Birkhäuser Science (Einstein Studies, Volume 12).

    Google Scholar 

  • Wilczek, Frank (2005). Physics: Treks of Imagination. Science 307 (11 February 2005), 852–853.

    Google Scholar 

  • Witten, Edward (2004). Perturbative Gauge Theory as a String Theory in Twistor Space. Commun. Math. Phys. 252, 189–258.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Center for Einstein Studies

About this chapter

Cite this chapter

Dray, T. (2012). The Border Between Relativity and Quantum Theory. In: Lehner, C., Renn, J., Schemmel, M. (eds) Einstein and the Changing Worldviews of Physics. Einstein Studies, vol 12. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4940-1_17

Download citation

Publish with us

Policies and ethics