Markov Entropy Centrality: Chemical, Biological, Crime, and Legislative Networks

  • C. R. Munteanu
  • J. Dorado
  • Alejandro Pazos-Sierra
  • F. Prado-Prado
  • L. G. Pérez-Montoto
  • S. Vilar
  • F. M. Ubeira
  • A. Sanchez-Gonzaléz
  • M. Cruz-Monteagudo
  • S. Arrasate
  • N. Sotomayor
  • E. Lete
  • A. Duardo-Sánchez
  • A. Díaz-López
  • G. Patlewicz
  • H. González-Díaz


In this chapter, we propose the study of multiple systems using node centrality or connectedness information measures derived from a Graph or Complex Network. The information is quantified in terms of the Entropy centrality k C θ(j) of the jth parts or states (nodes) of a Markov Chain associated with the system, represented by a network graph. The procedure is standard for all systems despite the complexity of the system. First, we define the phenomena to study, ranging from molecular systems composed by single molecules (drug activity, drug toxicity), multiple molecules (networks of chemical reactions), and macromolecules (DNA–drug interaction, protein function), to ecological systems (bacterial co-aggregation), or social systems (criminal causation, legislative productivity). Second, we collect several cases from literature (drugs, chemical reactions, proteins, bacterial species, or criminal cases). Next, we classify the cases in at least two different groups (active/nonactive drugs, enantioselective/non-enantioselective reactions, functional/nonfunctional proteins, co-aggregating/non-co-aggregating bacteria, or crime/noncrime cause, efficient/nonefficient law). After that, we represent the interconnectivity of the discrete parts of the system (atoms, amino acids, reactants, bacteria species, or people) as a graph or network. The Markov Chain theory is used to calculate the entropy of the system for nodes placed at different distances. Finally, we aim to both derive and validate a classification model using the entropy values as input variables and the classification of cases as the output variables. The model is used to predict the probability with which a case presents the studied property. The present work proposes the entropy of a Markov Chain associated with a network or graph to be used as a universal quantity in pattern recognition regardless the chemical, biological, social, or other nature of the systems under study.


Bacteria co-aggregation Chiral reaction Complex network Criminal causation Drug design Ecology Entropy Graph theory Markov chain Organic synthesis Parasite–host interaction Political legislative networks Proteomics 



C.R. Munteanu and H. González-Díaz acknowledge financial support of Program Isidro Parga Pondal of the funded by Dirección Xeral de Investigación e Desenvolvemento, Xunta de Galicia. S. Arrasate acknowledges sponsorships for a tenure-track research position at the University of Santiago de Compostela from the “Ikertzaileak Hobetzeko eta Mugitzeko/Perfeccionamiento y Movilidad del Personal Investigador” Program of the “Hezkuntza, Unibertsitate eta Ikerketa Saila/Departamento de Educación, Universidades e Investigación, Eusko Jaurlaritza/Gobierno Vasco.” Financial support from Gobierno Vasco (GIC07/92-IT-227-07) is also gratefully acknowledged. A. Duardo-Sánchez gratefully acknowledges Prof. Begoña Villaverde, Ph.D. and Prof. A. López-Díaz for financial support (project 2006/PX 207) of Department of Especial Public Law, Financial and Tributary Law Area, Faculty of Law from University of Santiago de Compostela (Spain), which was funded by Xunta de Galicia. This work is supported by the “Ibero-American Network of the Nano-Bio-Info-Cogno Convergent Technologies,” Ibero-NBIC Network (209RT0366) funded by CYTED (Ciencia y Tecnologa para el Desarrollo) and by the COMBIOMED Network, the grant (Ref. PIO52048 and RD07/0067/0005), funded by the Carlos III Health Institute.


  1. 1.
    Abhiman, S., Sonnhammer, E.L.: Large-scale prediction of function shift in protein families with a focus on enzymatic function. Proteins 60(4), 758–768 (2005)CrossRefGoogle Scholar
  2. 2.
    Agarwala, R., Batzoglou, S., Dancik, V., Decatur, S.E., Hannenhalli, S., Farach, M., Muthukrishnan, S., Skiena, S.: Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the hp model. J. Comput. Biol.4(3), 275–296 (1997)CrossRefGoogle Scholar
  3. 3.
    Agëero-Chapin, G., González-Díaz, H., Molina, R., Varona-Santos, J., Uriarte, E., González-Díaz, Y.: Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from psidium guajava L. FEBS Lett. 580, 723–730 (2006)Google Scholar
  4. 4.
    Agrawal, V.K., Banerji, M., Gupta, M., Singh, J., Khadikar, P.V., Supuran, C.T.: QSAR study on carbonic anhydrase inhibitors: water-soluble sulfonamides incorporating beta-alanyl moieties, possessing long lasting-intra ocular pressure lowering properties – a molecular connectivity approach. Eur. J. Med. Chem. 40(10), 1002–1012 (2005)CrossRefGoogle Scholar
  5. 5.
    Aguero-Chapin, G., González-Díaz, H., de la Riva, G., Rodriguez, E., Sanchez-Rodriguez, A., Podda, G., Vazquez-Padron, R.I.: MMM-QSAR recognition of ribonucleases without alignment: comparison with an HMM model and isolation from schizosaccharomyces pombe, prediction, and experimental assay of a new sequence. J. Chem. Inf. Model.48(2), 434–448 (2008)CrossRefGoogle Scholar
  6. 6.
    Albert, R., Barabsi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 4797 (2002)CrossRefGoogle Scholar
  7. 7.
    Alejandro S.-F., Ernesto P.-R., Lorenzo S.: Protein homology detection and fold inference through multiple alignment entropy profiles (2008)Google Scholar
  8. 8.
    Anderson, P.G., Johansson, F., Tanner, D.: Enantioselective addition of organolithium reagents to imines mediated by C2-symmetric bis(aziridine) ligands. Tetrahedron54, 11549–11566 (1998)CrossRefGoogle Scholar
  9. 9.
    Antunes, A., Ramos, M.J.: Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes. Genomics 86(6), 708–717 (2005)CrossRefGoogle Scholar
  10. 10.
    Ariëns, E.J., Soudijn, W., Timmermans, P.B.M.W.M.: Stereochemistry and Biological Activity of Drugs. Blackwell Scientific, Oxford (1983)Google Scholar
  11. 11.
    Ramos de Armas, R., González-Díaz, H., Molina, R., Uriarte, E.: Markovian backbone negentropies: Molecular descriptors for protein research. i. predicting protein stability in arc repressor mutants. Proteins56(4), 715–723 (2004)Google Scholar
  12. 12.
    Arrasate, S., Lete, E., Sotomayor, N.: Synthesis of enantiomerically enriched amines by chiral ligand mediated addition of organolithium reagents to imines. Tetrahedron Asymmetry 12(14), 2077–2082 (2001)CrossRefGoogle Scholar
  13. 13.
    Arteca, G.A., Tapia, O.: Characterization of fold diversity among proteins with the same number of amino acid residues. J. Chem. Inf. Comput. Sci.39(4), 642–649 (1999)Google Scholar
  14. 14.
    Balaban, A.T., Basak, S.C., Beteringhe, A., Mills, D., Supuran, C.T.: QSAR study using topological indices for inhibition of carbonic anhydrase ii by sulfanilamides and schiff bases. Mol. Divers 8(4), 401–412 (2004)CrossRefGoogle Scholar
  15. 15.
    Barabasi, A.L., Bonabeau, E.: Scale-free networks. Sci. Am.288(5), 60–69 (2003)Google Scholar
  16. 16.
    Basketter, D., Scholes, E.: Comparison of the local lymph node assay with the guinea-pig maximization test for the detection of a range of contact allergens. Fd. Chem. Toxic. 30, 65–69 (1992)CrossRefGoogle Scholar
  17. 17.
    Batagelj, V., Mrvar, A.: Pajek 1.15 (2006)Google Scholar
  18. 18.
    Batista, J., Godden, J.W., Bajorath, J.: Assessment of molecular similrity from the analysis if randomly generated structural fragment populations. J. Chem. Inf. Model.46 (2006)Google Scholar
  19. 19.
    Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (hp) model is np-complete. J. Comput. Biol. 5(1), 27–40 (1998)CrossRefGoogle Scholar
  20. 20.
    Berman, H., Henrick, K., Nakamura, H.: Announcing the worldwide protein data bank. Nat. Struct. Biol.10(12), 980 (2003)CrossRefGoogle Scholar
  21. 21.
    Berrisford, D.J.: Catalytic asymmetric C–C bond formation: new enolato- and organolithium chemistry. Angew. Chem., Int. Ed. Engl. 34, 178–180 (1995)Google Scholar
  22. 22.
    Bloch, R.: Additions of organometallic reagents to C = N bonds: reactivity and selectivity. Chem. Rev.98, 1404–1438 (1998)CrossRefGoogle Scholar
  23. 23.
    Bonchev, D.: Information Theoretic Indices for Characterization of Chemical Structures. Research Studies Press, Chichester (1983)Google Scholar
  24. 24.
    Bonchev, D.: Complexity in Chemistry, Biology, and Ecology. Springer, New York (2005)MATHCrossRefGoogle Scholar
  25. 25.
    Bonchev, D., Buck, G.A.: From molecular to biological structure and back. J. Chem. Inf. Model. 47(3), 909–917 (2007)CrossRefGoogle Scholar
  26. 26.
    Bork, P., Jensen, L.J., von Mering, C., Ramani, A.K., Lee, I., Marcotte, E.M.: Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol.14(3), 292–299 (2004)CrossRefGoogle Scholar
  27. 27.
    Bornholdt, S., Schuster, H.: Handbook of Graphs and Complex Networks: From the Genome to the Internet. Wiley-VCH GmbH & CO. KGa., Wheinheim (2003)Google Scholar
  28. 28.
    Breiger, R.: The analysis of social networks. In: Hardy, M., et al. (eds.) Handbook of Data Analysis, pp. 505–526. Sage Publications, London (2004)Google Scholar
  29. 29.
    Buswell, C.M., Herlihy, Y.M., Lawrence, L.M., McGuiggan, J.T., Marsh, P.D., Keevil, C.W., Leach, S.A.: Extended survival and persistence of campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl. Environ. Microbiol. 64(2), 733–741 (1998)Google Scholar
  30. 30.
    Cabello, N., Kizirian, J.C., Alexakis, A.: Enantioselective addition of aryllithium reagents to aromatic imines mediated by 1,2-diamine ligands. Tetrahedron Lett.45, 4639–4642 (2004)CrossRefGoogle Scholar
  31. 31.
    Cabello, N., Kizirian, J.C., Gille, S., Alexakis, A., Bernardinelli, G., Pinchard, L., Caille, J.C.: Simple 1,2-diamine ligands for asymmetric addition of aryllithium reagents to imines. Eur. J. Org. Chem. 4835–4842 (2005)Google Scholar
  32. 32.
    Casanola-Martin, G.M., Marrero-Ponce, Y., Khan, M.T., Ather, A., Khan, K.M., Torrens, F., Rotondo, R.: Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays. Eur. J. Med. Chem. 42(11-12), 1370–1381 (2007)CrossRefGoogle Scholar
  33. 33.
    Castillo-Garit, J.A., Marrero-Ponce, Y., Torrens, F., Garcia-Domenech, R., Romero-Zaldivar, V.: Bond-based 3d-chiral linear indices: theory and qsar applications to central chirality codification. J. Comput. Chem.29(15), 2500–2512 (2008)CrossRefGoogle Scholar
  34. 34.
    Chen, M., Huang, W.Q.: A branch and bound algorithm for the protein folding problem in the hp lattice model. Genom. Proteomics Bioinformatics 3(4), 225–230 (2005)Google Scholar
  35. 35.
    Cheng, Z., Ren, J., Li, Y., Chang, W., Chen, Z.: Study on the multiple mechanisms underlying the reaction between hydroxyl radical and phenolic compounds by qualitative structure and activity relationship. Bioorg. Med. Chem.10(12), 4067–4073 (2002)CrossRefGoogle Scholar
  36. 36.
    Chou, K.C., Wei, D.Q., Du, Q.S., Sirois, S., Zhong, W.Z.: Review: Progress in computational approach to drug development against sars. Curr. Med. Chem. 13, 3263–3270 (2006)CrossRefGoogle Scholar
  37. 37.
    Costerton, J.W., Geesey, G.G., Cheng, K.J.: How bacteria stick. Sci. Am.238(1), 86–95 (1978)Google Scholar
  38. 38.
    Craig, C.: Social structure. Dictionary of the Social Sciences. Oxford University Press, Oxford (2002)Google Scholar
  39. 39.
    Critchlow, D., Shuying, L., Nourijelyani, K., Pearl, D.: Some statistical methods for phylogenetic trees with application to HIV disease. Math. Comput. Model. 32(1-2), 69–81 (2000)MATHCrossRefGoogle Scholar
  40. 40.
    Cruz-Monteagudo, M., González-Díaz, H.: Unified drug-target interaction thermodynamic markov model using stochastic entropies to predict multiple drugs side effects. Eur. J. Med. Chem.40(10), 1030–1041 (2005)CrossRefGoogle Scholar
  41. 41.
    Cruz-Monteagudo, M., González-Díaz, H., Agero-Chapin, G., Santana, L., Borges, F., Domnguez, R.E., Podda, G., Uriarte, E.: Computational chemistry development of a unified free energy markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J. Comput. Chem. 28, 1909–1922 (2007a)CrossRefGoogle Scholar
  42. 42.
    Cruz-Monteagudo, M., González-Díaz, H., Aguero-Chapin, G., Santana, L., Borges, F., Dominguez, E.R., Podda, G., Uriarte, E.: Computational chemistry development of a unified free energy markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J. Comput. Chem.28(11), 1909–1923 (2007b)CrossRefGoogle Scholar
  43. 43.
    Cruz-Monteagudo, M., González-Díaz, H., Borges, F., Dominguez, E., Cordeiro, M.N.: 3D-mednes: An alternative “in silico” technique for chemical research in toxicology. 2. quantitative proteome-toxicity relationships (qptr) based on mass spectrum spiral entropy. Chem. Res. Toxicol. (21), 619–632 (2008a)Google Scholar
  44. 44.
    Cruz-Monteagudo, M., Munteanu, C., Borges, F., Cordeiro, M., Uriarte, E., Chou, K.C., González-Díaz, H.: Stochastic molecular descriptors for polymers. 4. study of complex mixtures with topological indices of mass spectra spiral and star networks: The blood proteome case. Polymer 49(25), 5575–5587 (2008c)Google Scholar
  45. 45.
    Cruz-Monteagudo, M., Munteanu, C.R., Borges, F., Cordeiro, M.N., Uriarte, E., González-Díaz, H.: Quantitative proteome-property relationships (qpprs). part 1: finding biomarkers of organic drugs with mean markov connectivity indices of spiral networks of blood mass spectra. Bioorg. Med. Chem.16(22), 9684–9693 (2008b)Google Scholar
  46. 46.
    Das, B., Meirovitch, H.: Solvation parameters for predicting the structure of surface loops in proteins: transferability and entropic effects. Proteins 51(3), 470–483 (2003)CrossRefGoogle Scholar
  47. 47.
    De, P., Singh, A.E., Wong, T., Yacoub, W., Jolly, A.M.: Sexual network analysis of a gonorrhoea outbreak. Sex. Transm. Infect.80(4), 280–285 (2004)CrossRefGoogle Scholar
  48. 48.
    Dea-Ayuela, M.A., Perez-Castillo, Y., Meneses-Marcel, A., Ubeira, F.M., Bolas-Fernandez, F., Chou, K.C., González-Díaz, H.: Hp-lattice qsar for dynein proteins: experimental proteomics (2d-electrophoresis, mass spectrometry) and theoretic study of a leishmania infantum sequence. Bioorg. Med. Chem. 16(16), 7770–7776 (2008)CrossRefGoogle Scholar
  49. 49.
    Dehmer, M.: A novel method for measuring the structural information content of networks. Cybern. Syst.39(8), 825–842 (2008)CrossRefGoogle Scholar
  50. 50.
    Dehmer, M.: Information-theoretic concepts for the analysis of complex networks. Appl. Artif. Intell. 22(7 & 8), 684–706 (2008)CrossRefGoogle Scholar
  51. 51.
    Denmark, S.E., Nakajima, N., Nicaise, O.J.C.: Asymmetric addition of organolithium reagents to imines. J. Am. Chem. Soc.116, 8797–8798 (1994)CrossRefGoogle Scholar
  52. 52.
    Denmark, S.E., Nicaise, O.J.C.: Ligand-mediated addition of organometallic reagents to azomethine functions. Chem. Commun. 999–1004 (1996)Google Scholar
  53. 53.
    Denmark, S.E., Nicaise, O.J.C.: In: Jacobsen, E.N., Pfaltz, A., Yamamoto, H. (eds.) Comprehensive Asymmetric Catalysis, vol. II, 921–961. Springer, Berlin (1999)Google Scholar
  54. 54.
    Denmark, S.E., Stiff, C.M.: Effect of ligand structure in the bisoxazoline mediated asymmetric addition of methyllithium to imines. J. Organic Chem. 65, 5875–5878 (2000)CrossRefGoogle Scholar
  55. 55.
    Devah, P.: The mark of a criminal record. Am. J. Soc.108, 937–975 (2003)CrossRefGoogle Scholar
  56. 56.
    Devillers, J., Balaban, A.T.: Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach, The Netherlands (1999)Google Scholar
  57. 57.
    Dobson, P.D., Cai, Y.D., Stapley, B.J., Doig, A.J.: Prediction of protein function in the absence of significant sequence similarity. Curr. Med. Chem. 11(16), 2135–2142 (2004)Google Scholar
  58. 58.
    Eliel, E.L., Wilen, S.H., Mander, L.N.: Stereochemistry of Organic Compounds. Wiley, New York (1994)Google Scholar
  59. 59.
    Elvers, K.T., Leeming, K., Moore, C.P., Lappin-Scott, H.M.: Bacterial-fungal biofilms in flowing water photo-processing tanks. J. Appl. Microbiol.84(4), 607–618 (1998)CrossRefGoogle Scholar
  60. 60.
    Enders, D., Reinhold, U.: Asymmetric synthesis of amines by nucleophilic 1,2-addition of organometallic reagents to the CN-double bond. Tetrahedron Asymmetry 8, 1895–1946 (1997)CrossRefGoogle Scholar
  61. 61.
    Erhan, D., LH́eureux P.J., Yue, S.Y., Bengio, Y.: Collaborative filtering on a family of biological targets. J. Chem. Inf. Model.46(2), 626–635 (2006)Google Scholar
  62. 62.
    Estrada, E.: Characterization of the folding degree of proteins. Bioinformatics 18, 697–704 (2002)CrossRefGoogle Scholar
  63. 63.
    Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics6(1), 35–40 (2006)Google Scholar
  64. 64.
    Estrada, E.: Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. J. Theor. Biol. 244(2), 296–307 (2007)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Estrada, E., Molina, E.: 3D connectivity indices in QSPR/QSAR studies. J. Chem. Inf. Comput. Sci.41(3), 791–797 (2001)Google Scholar
  66. 66.
    Estrada, E., Uriarte, E.: Recent advances on the role of topological indices in drug discovery research. Curr. Med. Chem. 8, 1573–1588 (2001)Google Scholar
  67. 67.
    Estrada, E., Uriarte, E., Vilar, S.: Effect of protein backbone folding on the stability of protein-ligand complexes. J. Proteome. Res.5, 105–111 (2006)CrossRefGoogle Scholar
  68. 68.
    Evans, P.: Contact and respiratory allergy; a regulatory perspective. In: Seiler, J., Autrup, J., Autrup, H. (eds.) Diversification in Toxicology – Man and Environment, pp. 275–284. Springer, Berlin (1998)Google Scholar
  69. 69.
    Ferino, G., González-Díaz, H., Delogu, G., Podda, G., Uriarte, E.: Using spectral moments of spiral networks based on PSA/MASS spectra outcomes to derive quantitative proteome-disease relationships (qpdrs) and predicting prostate cancer. Biochem. Biophys. Res. Commun. 372(2), 320–325 (2008)CrossRefGoogle Scholar
  70. 70.
    Forst, C.V.: Host-pathogen systems biology. DDT11(5-6), 220–227 (2006)Google Scholar
  71. 71.
    Fowler, J.H., Jeon, S.: The authority of supreme court precedent. Soc. Network 30, 16–30 (2008)CrossRefGoogle Scholar
  72. 72.
    Garcia-Domenech, R., Galvez, J., de Julian-Ortiz, J.V., Pogliani, L.: Some new trends in chemical graph theory. Chem. Rev.108(3), 1127–1169 (2008)CrossRefGoogle Scholar
  73. 73.
    Garcia-Garcia, A., Galvez, J., de Julian-Ortiz, J.V., Garcia-Domenech, R., Munoz, C., Guna, R., Borras, R.: Search of chemical scaffolds for novel antituberculosis agents. J. Biomol. Screen. 10(3), 206–214 (2005)CrossRefGoogle Scholar
  74. 74.
    Gates, M.A.: A simple way to look at DNA. J. Theor. Biol.119, 319–328 (1986)CrossRefGoogle Scholar
  75. 75.
    Gertz, J., Elfond, G., Shustrova, A., Weisinger, M., Pellegrini, M., Cokus, S., Rothschild, B.: Inferring protein interactions from phylogenetic distance matrices. Bioinformatics 19(16), 2039–2045 (2003)CrossRefGoogle Scholar
  76. 76.
    Gille, S., Cabello, N., Kizirian, J.C., Alexakis, A.: A new pseudo c2-symmetric tertiary diamine for the enantioselective addition of meli to aromatic imines. Tetrahedron Asymmetry17, 1045–1047 (2006)CrossRefGoogle Scholar
  77. 77.
    Goh, C.S., Cohen, F.E.: Co-evolutionary analysis reveals insights into protein–protein interactions. J. Mol. Biol. 324(1), 177–192 (2002)CrossRefGoogle Scholar
  78. 78.
    Gonzalez, M.P., Moldes del Carmen Teran, M.: A tops-mode approach to predict adenosine kinase inhibition. Bioorg. Med. Chem. Lett.14(12), 3077–3079 (2004c)Google Scholar
  79. 79.
    Gonzalez, M.P., del Carmen Teran Moldes, M.: A tops-mode approach to predict affinity for a1 adenosine receptors. 2-(arylamino)adenosine analogues. Bioorg. Med. Chem. 12(11), 2985–2993 (2004a)Google Scholar
  80. 80.
    Gonzalez, M.P., Diaz, H.G., Cabrera, M.A., Ruiz, R.M.: A novel approach to predict a toxicological property of aromatic compounds in the tetrahymena pyriformis. Bioorg. Med. Chem.12(4), 735–744 (2004b)CrossRefGoogle Scholar
  81. 81.
    González-Díaz, H., Agäero-Chapin, G., Varona, J., Molina, R., Delogu, G., Santana, L., Uriarte, E., Gianni, P.: 2D-RNA-coupling numbers: A new computational chemistry approach to link secondary structuretopology with biological function. J. Comput. Chem. 28, 1049–1056 (2007e)CrossRefGoogle Scholar
  82. 82.
    González-Díaz, H., Aguero-Chapin, G., Varona-Santos, J., Molina, R., de la Riva, G., Uriarte, E.: 2d rna-qsar: assigning acc oxidase family membership with stochastic molecular descriptors; isolation and prediction of a sequence from psidium guajava L. Bioorg. Med. Chem. Lett.15(11), 2932–2937 (2005a)CrossRefGoogle Scholar
  83. 83.
    González-Díaz, H., González-Díaz, Y., Santana, L., Ubeira, F.M., Uriarte, E.: Proteomics, networks and connectivity indices. Proteomics 8, 750–778 (2008a)CrossRefGoogle Scholar
  84. 84.
    González-Díaz, H., Marrero, Y., Hernandez, I., Bastida, I., Tenorio, E., Nasco, O., Uriarte, E., Castanedo, N., Cabrera, M.A., Aguila, E., Marrero, O., Morales, A., Perez, M.: 3D-mednes: an alternative “in silico” technique for chemical research in toxicology. 1. prediction of chemically induced agranulocytosis. Chem. Res. Toxicol.16(10), 1318–1327 (2003)Google Scholar
  85. 85.
    González-Díaz, H., Molina, R., Uriarte, E.: Markov entropy backbone electrostatic descriptors for predicting proteins biological activity. Bioorg. Med. Chem. Lett. 14(18), 4691–4695 (2004)CrossRefGoogle Scholar
  86. 86.
    González-Díaz, H., Molina, R., Uriarte, E.: Stochastic molecular descriptors for polymers 1. modeling the properties of icosahedral viruses with 3d-markovian negentropies. Polymer45(11), 3845–3853 (2004)Google Scholar
  87. 87.
    González-Díaz, H., Molina, R., Uriarte, E.: Recognition of stable protein mutants with 3d stochastic average electrostatic potentials. FEBS Lett. 579(20), 4297–4301 (2005)CrossRefGoogle Scholar
  88. 88.
    González-Díaz, H., Molina, R., Uriarte, E.: Recognition of stable protein mutants with 3d stochastic average electrostatic potentials. FEBS Lett.579(20), 4297–4301 (2005b)CrossRefGoogle Scholar
  89. 89.
    González-Díaz, H., Molina-Ruiz, R., Hernandez, I.: March-inside v3.0 (markov chains invariants for simulation & design); windows supported version under request to the main author contact email: (2007c)Google Scholar
  90. 90.
    González-Díaz, H., Pérez-Bello, A., Cruz-Monteagudo, M., González-Díaz, Y., Santana, L., Uriarte, E.: Chemometrics for qsar with low sequence homology: Mycobacterial promoter sequences recognition with 2d-rna entropies. Chemom. Intell. Lab. Systs. 85, 20–26 (2007b)CrossRefGoogle Scholar
  91. 91.
    González-Díaz, H., Perez-Castillo, Y., Podda, G., Uriarte, E.: Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3d and topological indices. J. Comput. Chem.28(12), 1990–1995 (2007c)CrossRefGoogle Scholar
  92. 92.
    González-Díaz, H., Prado-Prado, F.: Unified qsar and network-based computational chemistry approach to antimicrobials, part 1: Multispecies activity models for antifungals. J. Comput. Chem. 29, 656–657 (2008)CrossRefGoogle Scholar
  93. 93.
    González-Díaz, H., Prado-Prado, F., Ubeira, F.M.: Predicting antimicrobial drugs and targets with the march-inside approach. Curr. Top. Med. Chem.8(18), 1676–1690 (2008)CrossRefGoogle Scholar
  94. 94.
    González-Díaz, H., Prado-Prado, F.J., Santana, L., Uriarte, E.: Unify qsar approach to antimicrobials. part 1: Predicting antifungal activity against different species. Bioorg. Med. Chem. 14, 5973–5980 (2006a)Google Scholar
  95. 95.
    González-Díaz, H., Saiz-Urra, L., Molina, R., Santana, L., Uriarte, E.: A model for the recognition of protein kinases based on the entropy of 3d van der waals interactions. J. Proteome. Res.6(2), 904–908 (2007d)CrossRefGoogle Scholar
  96. 96.
    González-Díaz, H., Saiz-Urra, L., Molina, R., Santana, L., Uriarte, E.: A model for the recognition of protein kinases based on the entropy of 3d van der waals interactions. J. Proteome. Res. 6(2), 904–908 (2007e)CrossRefGoogle Scholar
  97. 97.
    González-Díaz, H., Saíz-Urra, L., Molina, R., Uriarte, E.: Stochastic molecular descriptors for polymers. 2. spherical truncation of electrostatic interactions on entropy based polymers 3d-qsar. Polymer46, 2791–2798 (2005b)Google Scholar
  98. 98.
    González-Díaz, H., Sanchez-Gonzalez, A., González-Díaz, Y.: 3d-qsar study for DNA cleavage proteins with a potential anti-tumor atcun-like motif. J. Inorg. Biochem. 100(7), 1290–1297 (2006)CrossRefGoogle Scholar
  99. 99.
    González-Díaz, H., Uriarte, E.: Biopolymer stochastic moments. i. modeling human rhinovirus cellular recognition with protein surface electrostatic moments. Biopolymers77(5), 296–303 (2005a)Google Scholar
  100. 100.
    González-Díaz, H., Uriarte, E.: Proteins qsar with markov average electrostatic potentials. Bioorg. Med. Chem. Lett 15(22), 5088–5094 (2005b)CrossRefGoogle Scholar
  101. 101.
    González-Díaz, H., Uriarte, E., Ramos de Armas, R.: Predicting stability of arc repressor mutants with protein stochastic moments. Bioorg. Med. Chem.13(2), 323–331 (2005c)Google Scholar
  102. 102.
    González-Díaz, H., Vilar, S., Santana, L., Uriarte, E.: Medicinal chemistry and bioinformatics current trends in drugs discovery with networks topological indices. Curr. Top. Med. Chem. 7(10), 1025–1039 (2007a)CrossRefGoogle Scholar
  103. 103.
    González-Díaz, H., Vina, D., Santana, L., de Clercq, E., Uriarte, E.: Stochastic entropy qsar for the in silico discovery of anticancer compounds: prediction, synthesis, and in vitro assay of new purine carbanucleosides. Bioorg. Med. Chem.14(4), 1095–1107 (2006b)CrossRefGoogle Scholar
  104. 104.
    Graham, D.J.: Information content and organic molecules: Aggregation states and solvent effects. J. Chem. Inf. Model. 45(1223) (2005)Google Scholar
  105. 105.
    Graham, D.J.: Information content in organic molecules: Brownian processing at low levels. J. Chem. Inf. Model.47(2), 376–389 (2007)CrossRefGoogle Scholar
  106. 106.
    Graham, D.J., Kim, M.: Information and classical thermodynamic transformations. J. Phys. Chem. B 112, 10585–10593 (2008)CrossRefGoogle Scholar
  107. 107.
    Gupta, A., Manuch, J., Stacho, L.: Inverse protein folding in 2d hp mode (extended abstract). Proc IEEE Comput. Syst. Bioinform. Conf. 311–318 (2004)Google Scholar
  108. 108.
    Gupta, A., Manuch, J., Stacho, L.: Structure-approximating inverse protein folding problem in the 2d hp model. J. Comput. Biol.12(10), 1328–1345 (2005)MathSciNetCrossRefGoogle Scholar
  109. 109.
    Hamacher, K.: Information theoretical measures to analyze trajectories in rational molecular design. J. Comput. Chem. 28(16), 2576–2580 (2007)MathSciNetCrossRefGoogle Scholar
  110. 110.
    Hampl, V., Cepicka, I., Flegr, J., Tachezy, J., Kulda, J.: Critical analysis of the topology and rooting of the parabasalian 16s rRNA tree. Mol. Phylogenet. Evol.32(3), 711–723 (2004)CrossRefGoogle Scholar
  111. 111.
    Han, L., Cui, J., Lin, H., Ji, Z., Cao, Z., Li, Y., Chen, Y.: Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics 6, 4023–4037 (2006)CrossRefGoogle Scholar
  112. 112.
    Harford, C., Sarkar, B.: Neuromedin C binds Cu(II) and Ni(II) via the atcun motif: implications for the CNS and cancer growth. Biochem. Biophys. Res. Commun.209(3), 877–882 (1995)CrossRefGoogle Scholar
  113. 113.
    Harvey, P., Pagel, M.: The Comparative Method in Evolutionary Biology, Ecology and Evolution, vol. 1. Oxford University Press, Oxford (1991)Google Scholar
  114. 114.
    Hasegawa, M., Taniyama, D., Tomioka, K.: Facile asymmetric synthesis of a-amino acids employing chiral ligand-mediated asymmetric addition reactions of phenyllithium with imines. Tetrahedron 56, 10153–10158 (2000)CrossRefGoogle Scholar
  115. 115.
    Hjelle, B., Jenison, S., Torrez-Martinez, N., Yamada, T., Nolte, K., Zumwalt, R., MacInnes, K., Myers, G.: A novel hantavirus associated with an outbreak of fatal respiratory disease in the southwestern united states: evolutionary relationships to known hantaviruses. J. Virol.68(2), 592–596 (1994)Google Scholar
  116. 116.
    Hua, S., Sun, Z.: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17(8), 721–728 (2001)CrossRefGoogle Scholar
  117. 117.
    Inc, H.: Hyperchem release 7.0.3 (2002)Google Scholar
  118. 118.
    Inoue, I., Shindo, M., Koga, K., Kanai, M., Tomioka, K.: Enantioselective reaction of an imine with methyllithium catalyzed by a chiral ligand. Tetrahedron Asymmetry6, 2527–2533 (1995)CrossRefGoogle Scholar
  119. 119.
    Inoue, I., Shindo, M., Koga, K., Tomioka, K.: Asymmetric 1,2-addition of organolithium to aldimines catalyzed by chiral ligand. Tetrahedron 50, 4429–4438 (1994)CrossRefGoogle Scholar
  120. 120.
    Jacques, J., Collet, A., Wilen, S.H.: Enantiomers, Racemates, and Resolution. Wiley, New York (1981)Google Scholar
  121. 121.
    Jefferson, K.K.: What drives bacteria to produce a biofilm? FEMS Microbiol. Lett.236(2), 163–173 (2004)Google Scholar
  122. 122.
    Jensen, S.T., Shen, L., Liu, J.S.: Combining phylogenetic motif discovery and motif clustering to predict co-regulated genes. Bioinformatics 2120), 3832–3839 (2005)Google Scholar
  123. 123.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature407(6804), 651–654 (2000)Google Scholar
  124. 124.
    Jiang, M., Zhu, B.: Protein folding on the hexagonal lattice in the hp model. J. Bioinform. Comput. Biol. 3(1), 19–34 (2005)MathSciNetCrossRefGoogle Scholar
  125. 125.
    Johnson, J.C., Orbach, M.K.: Perceiving the political landscape: ego biases in cognitive political networks. Soc. Network24, 291–310 (2002)CrossRefGoogle Scholar
  126. 126.
    Junker, B.H., Koschuetzki, D., Schreiber, F.: Exploration of biological network centralities with centibin. BMC Bioinformatics 7(1), 219 (2006)CrossRefGoogle Scholar
  127. 127.
    Karelson, M.: Molecular Descriptors in QSAR/QSPR. Wiley-Interscience, New York (2000)Google Scholar
  128. 128.
    Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol.9(9), 646–652 (2002)CrossRefGoogle Scholar
  129. 129.
    Kier, L.B.: Use of molecular negentropy to encode structure governing biological activity. J. Pharm. Sci. 69(7), 807–810 (1980)CrossRefGoogle Scholar
  130. 130.
    Kimber, I., Hilton, J., Botham, P.: Identification of contact allergens using the murine local lymph node assay. comparisons with the buehler occluded patch test in guinea pigs. J. Appl. Toxicol.10, 173–180 (1990)Google Scholar
  131. 131.
    Kimoto, E., Tanaka, H., Gyotoku, J., Morishige, F., Pauling, L.: Enhancement of antitumor activity of ascorbate against ehrlich ascites tumor cells by the copper:glycylglycylhistidine complex. Cancer Res. 43(2), 824–828 (1983)Google Scholar
  132. 132.
    Kizirian, J.C., Cabello, N., Pinchard, L., Caille, J.C., Alexakis, A.: Enantioselective addition of methyllithium to aromatic imines catalyzed by c2 symmetric tertiary diamines. Tetrahedron61, 8939–8946 (2005)CrossRefGoogle Scholar
  133. 133.
    Klein, J.: The chemistry. In: Patai, S. (ed.) The Chemistry of Double-bonded Functional Groups: Suppement A, vol. 2. Wiley, Chichester (1989)Google Scholar
  134. 134.
    Kleinman, E.F., Volkmann, R.A.: In: Heathcock, C.H. (ed.) Comprehensive Organic Synthesis, Additions to C-X p-Bonds, Part 2, vol. 2. Pergamon Press, Oxford (1991)Google Scholar
  135. 135.
    Klovdahl, A.S., Potterat, J.J., Woodhouse, D.E., Muth, J.B., Muth, S.Q., Darrow, W.W.: Social networks and infectious disease: The colorado springs study. Soc. Sci. Med. 38, 79–88 (1994)CrossRefGoogle Scholar
  136. 136.
    Kolenbrander, P., Andersen, R., Clemans, D., Whittaker, C., Klier, C.: Potential role of functionally similar coaggregation mediators in bacterial succession. In: Newman, H., et al. (eds.) Dental Plaque Revisited: Oral Biofilms in Health and Disease, pp. 171–186. Bioline Press, Cardiff (1999)Google Scholar
  137. 137.
    Koschtzki, D.: Centibin, Centralities in Biological Networks. IPK Gatersleben, Germany (2004)Google Scholar
  138. 138.
    Kowalski, R.B., Wold, S.: Pattern recognition in chemistry. In: Krishnaiah, R.P., et al. (eds.) Handbook of Statistic, pp. 673–697. North Holland Publishing, Amsterdam (1982)Google Scholar
  139. 139.
    Kutner, M., Nachtsheim, C., Neter, J., Li, W.: Standardized multiple regression model. In: Applied Linear Statistical Models, 5th edn., pp. 271–277. McGraw Hill, New York (2005)Google Scholar
  140. 140.
    Lazareva-Ulitsky, B., Diemer, K., Thomas, P.D.: On the quality of tree-based protein classification. Bioinformatics21(9), 1876–1890 (2005)Google Scholar
  141. 141.
    Leong, P.M., Morgenthaler, S.: Random walk and gap plots of dna sequences. Comput. Appl. Biosci. 11, 503–507 (1995)Google Scholar
  142. 142.
    Liao, B., Luo, J., Li, R., Zhu, W.: RNA secondary structure 2d graphical representation without degeneracy. Int. J. Quant. Chem.106(8), 1749–1755 (2006)CrossRefGoogle Scholar
  143. 143.
    Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Aberg, Y.: The webof human sexual contacts. Nature 411, 907–908 (2001)Google Scholar
  144. 144.
    Lorand, T., Kocsis, B., Sohar, P., Nagy, G., Jozsef, P., Kispal, G., Laszlo, R., Prokai, L.: Synthesis and antibacterial activity of fused mannich ketones. Eur. J. Med. Chem.37(10), 803–812 (2002)CrossRefGoogle Scholar
  145. 145.
    Mace, R., Holden, C.J.: A phylogenetic approach to cultural evolution. Trends Ecol. Evol. 20(3), 116–121 (2005)CrossRefGoogle Scholar
  146. 146.
    Marques, A.T., Antunes, A., Fernandes, P.A., Ramos, M.J.: Comparative evolutionary genomics of the hadh2 gene encoding abeta-binding alcohol dehydrogenase/17beta-hydroxysteroid dehydrogenase type 10 (abad/hsd10). BMC Genom.7, 202 (2006)Google Scholar
  147. 147.
    Marrero-Ponce, Y., Medina-Marrero, R., Castillo-Garit, J.A., Romero-Zaldivar, V., Torrens, F., Castro, E.A.: Protein linear indices of the ’macromolecular pseudograph alpha-carbon atom adjacency matrix’ in bioinformatics. part 1: prediction of protein stability effects of a complete set of alanine substitutions in arc repressor. Bioorg. Med. Chem. 13(8), 3003–3015 (2005)Google Scholar
  148. 148.
    Marrero-Ponce, Y., Nodarse, D., González-Díaz, H., Ramos de Armas, R., Romero-Zaldivar, V., Torrens, F., Castro, E.A.: Nucleic acid quadratic indices of the “macromolecular graphs nucleotides adjacency matrix”. modeling of footprints after the interaction of paromomycin with the hiv-1?-RNA packaging region. Int. J. Mol. Sci.5, 276–293 (2004)Google Scholar
  149. 149.
    Maslovat, D., Chus, R., Lee, T.D., Franks, I.M.: Contextual interference: single task versus multi-task learning. Mot. Contr. 8(2), 213–233 (2004)Google Scholar
  150. 150.
    Mason, O., Verwoerd, M.: Graph theory and networks in biology. IET Syst. Biol.1(2), 89–119 (2007)CrossRefGoogle Scholar
  151. 151.
    McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)Google Scholar
  152. 152.
    McCammon, J.A., Karplus, M.: Internal motions of antibody molecules. Nature268(5622), 765–766 (1977)Google Scholar
  153. 153.
    Microsoft.Corp.: Microsoft excel (2002)Google Scholar
  154. 154.
    Milla, M.E., Brown, B.M., Sauer, R.T.: Protein stability effects of a complete set of alanine substitutions in arc repressor. Nat. Struct. Biol. 1(8), 518–523 (1994)CrossRefGoogle Scholar
  155. 155.
    Mizruchi, M.S.: The American Corporate Network, 1904–1974. Sage, Beverly Hills (1982)Google Scholar
  156. 156.
    Molina, E., Diaz, H.G., Gonzalez, M.P., Rodriguez, E., Uriarte, E.: Designing antibacterial compounds through a topological substructural approach. J. Chem. Inf. Comput. Sci.44(2), 515–521 (2004)Google Scholar
  157. 157.
    Moreno, J.L.: Who Shall Survive? Beacon House, New York (1934)Google Scholar
  158. 158.
    Moser, H., Rihs, G., Santer, H.Z.: Naturforsch 37B, 451–462 (1982)Google Scholar
  159. 159.
    Mukhopadhyay, A., Peterson, R.T.: Fishing for new antimicrobials. Curr. Opin. Chem. Biol.10(4), 327–333 (2006)CrossRefGoogle Scholar
  160. 160.
    Munteanu, C.R., González-Díaz, H., Magalhaes, A.L.: Enzymes/non-enzymes classification model complexity based on composition, sequence, 3d and topological indices. J. Theor. Biol. 254(2), 476–482 (2008)CrossRefGoogle Scholar
  161. 161.
    Munteanu, C.R., Gonzles-Diz, H.: S2snet - sequence to star network, reg. no. 03/2008/1338 (2008)Google Scholar
  162. 162.
    Nalewajski, R.F.: Information Theory of Molecular Systems. Elsevier, Amsterdam (2006)Google Scholar
  163. 163.
    Nandy, A.: Two-dimensional graphical representation of dna sequences and intron-exon discrimination in intron-rich sequences. Comput. Appl. Biosci.12(1), 55–62 (1996)MathSciNetGoogle Scholar
  164. 164.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 56, 167–256 (2003)CrossRefGoogle Scholar
  165. 165.
    North, M.: Contemp. Org. Synth.3, 323–343 (1996)CrossRefGoogle Scholar
  166. 166.
    Padgett, J.F., Ansell, C.K.J.F.: Robust action and the rise of the medici, 1400–1434. Am. J. Sociol. 98, 259–1319 (1993)CrossRefGoogle Scholar
  167. 167.
    Patlewicz, G.Y., Basketter, D.A., Pease, C.K., Wilson, K., Wright, Z.M., Roberts, D.W., Bernard, G., Arnau, E.G., Lepoittevin, J.P.: Further evaluation of quantitative structure–activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens. Contact Dermatitis50(2), 91–97 (2004)Google Scholar
  168. 168.
    Perez-Bello, A., Munteanu, C.R., Ubeira, F.M., Lopes De Magalhaes, A., Uriarte, E., González-Díaz, H.: Alignment-free prediction of mycobacterial dna promoters based on pseudo-folding lattice network or star-graph topological indices. J. Theor. Biol. (2008)Google Scholar
  169. 169.
    Perez Gonzalez, M., González-Díaz, H., Molina Ruiz, R., Cabrera, M.A., Ramos de Armas, R.: Tops-mode based qsars derived from heterogeneous series of compounds. applications to the design of new herbicides. J. Chem. Inf. Comput. Sci. 43(4), 1192–1199 (2003)Google Scholar
  170. 170.
    Perron, Q., Alexakis, A.: Synthesis and application of a new pseudo c2-symmetric tertiary diamine for the enantioselective addition of meli to aromatic imines. Tetrahedron Asymmetry18, 2503–2506 (2007)CrossRefGoogle Scholar
  171. 171.
    Pompe, M., Veber, M., Randic, M., Balaban, A.T.: Using variable and fixed topological indices for the prediction of reaction rate constants of volatile unsaturated hydrocarbons with oh radicals. Molecules 9, 1160–1176 (2004)CrossRefGoogle Scholar
  172. 172.
    Prado-Prado, F., González-Díaz, H., Santana, L., Uriarte, E.: Unified qsar approach to antimicrobials. part 2: Predicting activity against more than 90 different species in order to halt antibacterial resistance. Bioorg. Med. Chem.15, 897–902 (2007)Google Scholar
  173. 173.
    Prado-Prado, F., González-Díaz, H., Martinez de la Vega, O., Ubeira, F.M., Chou, K.C.: Unified qsar approach to antimicrobials. part 3: First multi-tasking qsar model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg. Med. Chem. 16, 5871–5880 (2008)Google Scholar
  174. 174.
    Prado-Prado, F.J., de la Vega, O.M., Uriarte, E., Ubeira, F.M., Chou, K.C., González-Díaz, H.: Unified qsar approach to antimicrobials. 4. multi-target qsar modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. Bioorg. Med. Chem.17, 56975 (2009)Google Scholar
  175. 175.
    Puslednik, L., Serb, J.M.: Molecular phylogenetics of the pectinidae (mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Mol. Phylogenet. Evol. 48(3), 1178–1188 (2008)CrossRefGoogle Scholar
  176. 176.
    Ramani, A.K., Marcotte, E.M.: Exploiting the co-evolution of interacting proteins to discover interaction specificity. J. Mol. Biol.327(1), 273–284 (2003)CrossRefGoogle Scholar
  177. 177.
    Randic, M., Balaban, A.T.: On a four-dimensional representation of dna primary sequences. J. Chem. Inf. Comput. Sci. 43(2), 532–539 (2003)MathSciNetGoogle Scholar
  178. 178.
    Randic, M., Guo, X., Basak, S.C.: On the characterization of dna primary sequences by triplet of nucleic acid bases. J. Chem. Inf. Comput. Sci.41(3), 619–626 (2001)Google Scholar
  179. 179.
    Ren, Y., Liu, H., Yao, X., Liu, M.: Prediction of ozone tropospheric degradation rate constants by projection pursuit regression. Anal. Chim. Acta 589, 150–158 (2007)CrossRefGoogle Scholar
  180. 180.
    Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., Handley, P.S.: Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol.11(2), 94–100 (2003a)CrossRefGoogle Scholar
  181. 181.
    Rickard, A.H., McBain, A.J., Ledder, R.G., Handley, P.S., Gilbert, P.: Coaggregation between freshwater bacteria within biofilm and planktonic communities. FEMS Microbiol. Lett. 220(1), 133–140 (2003b)CrossRefGoogle Scholar
  182. 182.
    Risch, N., Arend, M.: In: Helmchen, G., Hoffmann, R.W., Mulzer, J., Schaumann, E. (eds.) Methods of Organic Chemistry. Stereoselective Synthesis [Houben-Weyl], Workbench Edition E21, Vol. 3. Thieme, Stuttgart (1996)Google Scholar
  183. 183.
    Rodloff, A.C., Leclercq, R., Debbia, E.A., Canton, R., Oppenheim, B.A., Dowzicky, M.J.: Comparative analysis of antimicrobial susceptibility among organisms from france, germany, italy, spain and the uk as part of the tigecycline evaluation and surveillance trial. Clin. Microbiol. Infect.14(4), 307–314 (2008)CrossRefGoogle Scholar
  184. 184.
    Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)MathSciNetMATHCrossRefGoogle Scholar
  185. 185.
    Saiz-Urra, L., González-Díaz, H., Uriarte, E.: Proteins markovian 3d-qsar with spherically-truncated average electrostatic potentials. Bioorg. Med. Chem.13(11), 3641–3647 (2005)CrossRefGoogle Scholar
  186. 186.
    Sankararamakrishnan, R., Verma, S., Kumar, S.: Atcun-like metal-binding motifs in proteins: identification and characterization by crystal structure and sequence analysis. Proteins 58(1), 211–221 (2005)CrossRefGoogle Scholar
  187. 187.
    Santana, L., Uriarte, E., González-Díaz, H., Zagotto, G., Soto-Otero, R., Mendez-Alvarez, E.: A qsar model for in silico screening of mao-a inhibitors. prediction, synthesis, and biological assay of novel coumarins. J. Med. Chem.49(3), 1149–1156 (2006)Google Scholar
  188. 188.
    Savoia, D.: Progress in the asymmetric synthesis of 1,2-diamines from azomethine compounds. Top. Organomet. Chem. 15, 1–58 (2005)CrossRefGoogle Scholar
  189. 189.
    Sciretti, D., Bruscolini, P., Pelizzola, A., Pretti, M., Jaramillo, A.: Computational protein design with side-chain conformational entropy. Proteins74(1), 176–191 (2008)Google Scholar
  190. 190.
    Seyden-Penne, J.: Chiral Auxiliaries and Ligands in Asymmetric Synthesis. Wiley, New York (1995)Google Scholar
  191. 191.
    SRL, T.: Dragon for windows ver. 5.3, software for molecular descriptor calculations, (2005)
  192. 192.
    Stahura, F.L., Godden, J.W., Xue, L., Bajorath, J.: Distinguishing between natural products and synthetic molecules by descriptor shannon entropy analysis and binary qsar calculations. J. Chem. Inf. Comput. Sci. 40(5), 1245–1252 (2000)Google Scholar
  193. 193.
    StatSoft.Inc.: Statistica, Data Analysis Software System, version 6.0 (2002)Google Scholar
  194. 194.
    Stewart, J., Gill, L.: Econometrics, 2nd edn. Prentice Hall, London (1998)Google Scholar
  195. 195.
    Strogatz, S.H.: Exploring complex networks. Nature410(6825), 268–276 (2001)Google Scholar
  196. 196.
    Taniyama, D., Hasegawa, M., Tomioka, K.: A facile asymmetric synthesis of 1-substituted tetrahydroisoquinoline based on a chiral ligand-mediated addition of organolithium to imine. Tetrahedron Asymmetry 10, 221–223 (1999)CrossRefGoogle Scholar
  197. 197.
    Thachuk, C., Shmygelska, A., Hoos, H.H.: A replica exchange monte carlo algorithm for protein folding in the hp model. BMC Bioinform.8(1), 342 (2007)CrossRefGoogle Scholar
  198. 198.
    Tippery, N.P., Les, D.H.: Phylogenetic analysis of the internal transcribed spacer (its) region in menyanthaceae using predicted secondary structure. Mol. Phylogenet. Evol. (2008)Google Scholar
  199. 199.
    Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, New York (2002)Google Scholar
  200. 200.
    Van de Waterbeemd, H.: Discriminant analysis for activity prediction. In: Manhnhold, R., Krogsgaard-Larsen, L., Timmerman, H. (eds.) Methods and Principles in Medicinal Chemistry, Chemometric methods in molecular design, Van Waterbeemd, H. (ed.), vol. 2, 265–288. VCH, Weinhiem (1995a)Google Scholar
  201. 201.
    Van Waterbeemd, H.: Discriminant analysis for activity prediction. In: Van Waterbeemd, H. (ed.) Chemometric methods in molecular design, Method and Principles in Medicinal Chemistry, vol. 2, pp. 265–282. Wiley-VCH, New York (1995b)CrossRefGoogle Scholar
  202. 202.
    Van Waterbeemd, H.: Chemometric methods in molecular design,Method and Principles in Medicinal Chemistry, vol. 2. Wiley-VCH, New York (1995c)CrossRefGoogle Scholar
  203. 203.
    Vassura, M., Margara, L., Di Lena, P., Medri, F., Fariselli, P., Casadio, R.: Reconstruction of 3d structures from protein contact maps. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(3), 357–367 (2008)CrossRefGoogle Scholar
  204. 204.
    Vilar, S., González-Díaz, H., Santana, L., Uriarte, E.: Qsar model for alignment-free prediction of human breast cancer biomarkers based on electrostatic potentials of protein pseudofolding hp-lattice networks. J. Comput. Chem.29, 2613–2622 (2008)CrossRefGoogle Scholar
  205. 205.
    Volkmann, R.A.: In: S.L. Schreiber (ed.) Comprehensive Organic Synthesis, Additions to C-X p-Bonds, Part 1, vol. 1. Pergamon Press, Oxford (1991)Google Scholar
  206. 206.
    Volokhov, D.V., Neverov, A.A., George, J., Kong, H., Liu, S.X., Anderson, C., Davidson, M.K., Chizhikov, V.: Genetic analysis of housekeeping genes of members of the genus acholeplasma: phylogeny and complementary molecular markers to the 16s rRNA gene. Mol. Phylogenet. Evol. 44(2), 699–710 (2007)CrossRefGoogle Scholar
  207. 207.
    Weka: Waikato Environment for Knowledge Analysis (weka) (2002)Google Scholar
  208. 208.
    Wellman, B., Berkowitz, S.D.: Social Structures: A Network Approach. Cambridge University Press, Cambridge (1988)Google Scholar
  209. 209.
    White Harrison, S.B., Breiger, R.: Social structure from multiple networks: I blockmodels of roles and positions. Am. J. Sociol.81, 730–780 (1976)CrossRefGoogle Scholar
  210. 210.
    Wiener, H.: J. Am. Chem. Soc. 69, 17 (1947)CrossRefGoogle Scholar
  211. 211.
    Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco (2000)Google Scholar
  212. 212.
    Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics24(13), i232–i240 (2008)Google Scholar
  213. 213.
    Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L., Vidal, M.: Drug-target network. Nat. Biotechnol. 25(10), 1119–1126 (2007)Google Scholar
  214. 214.
    Zhang, X.S., Wang, Y., Zhan, Z.W., Wu, L.Y., Chen, L.: Exploring protein’s optimal hp configurations by self-organizing mapping. J. Bioinform. Comput. Biol.3(2), 385–400 (2005)CrossRefGoogle Scholar
  215. 215.
    Zhou, H., Zhou, Y.: Stability scale and atomic solvation parameters extracted from 1023 mutation experiments. Proteins 49(4), 483–492 (2002)CrossRefGoogle Scholar
  216. 216.
    Zweig, M.H.: Apolipoproteins and lipids in coronary artery disease. analysis of diagnostic accuracy using receiver operating characteristic plots and areas. Arch. Pathol. Lab. Med.118(2), 141–144 (1994)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • C. R. Munteanu
    • 1
  • J. Dorado
    • 1
  • Alejandro Pazos-Sierra
    • 1
  • F. Prado-Prado
    • 2
  • L. G. Pérez-Montoto
    • 2
  • S. Vilar
    • 2
  • F. M. Ubeira
    • 3
  • A. Sanchez-Gonzaléz
    • 4
  • M. Cruz-Monteagudo
    • 5
  • S. Arrasate
    • 6
  • N. Sotomayor
    • 6
  • E. Lete
    • 6
  • A. Duardo-Sánchez
    • 7
  • A. Díaz-López
    • 7
  • G. Patlewicz
    • 8
    • 9
  • H. González-Díaz
    • 10
    • 11
    • 12
    • 2
  1. 1.Department of Information and Communication Technologies, Computer Science FacultyUniversity of A CoruñaA CoruñaSpain
  2. 2.Faculty of PharmacyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  4. 4.Department of Inorganic Chemistry, Faculty of PharmacyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  5. 5.CEQA, Faculty of Chemistry and PharmacyUCLVSanta ClaraCuba
  6. 6.Department of Organic Chemistry II, Faculty of Science and TechnologyUniversity of the Basque Country/Euskal Herriko UnibertsitateaBilbaoSpain
  7. 7.Department of Special Public Law, Faculty of LawUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  8. 8.Joint Research Centre (JRC), EuropeanCommissionInstitute for Health and Consumer Protection (IHPC)IspraItaly
  9. 9.DuPont Haskell Global Centers for Health and Environmental SciencesNewarkUSA
  10. 10.Department of Microbiology and ParasitologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  11. 11.Department of Organic ChemistryUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  12. 12.Department of Inorganic ChemistryUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations