Advertisement

Inferences About Coupling from Ecological Surveillance Monitoring: Approaches Based on Nonlinear Dynamics and Information Theory

  • L. J. Moniz
  • J. D. Nichols
  • J. M. Nichols
  • E. G. Cooch
  • L. M. Pecora
Chapter

Abstract

Some monitoring programs for ecological resources are developed as components of larger science or management programs and are thus guided by a priori hypotheses. More commonly, ecological monitoring programs are initiated for the purpose of surveillance with no a priori hypotheses in mind. No conceptual framework currently exists to guide the development of surveillance monitoring programs, resulting in substantial debate about program design. We view surveillance monitoring programs as providing information about system dynamics and focus on methods for extracting such information from time series of monitoring data. We briefly describe methods from the general field of nonlinear dynamics that we believe may be useful in extracting information about system dynamics. In looking at the system as a network of locations or components, we emphasize methods for assessing coupling between system components for use in understanding system dynamics and interactions and in detecting changes in system dynamics. More specifically, these methods hold promise for such ecological problems as identifying indicator species, developing informative spatial monitoring designs, detecting ecosystem change and damage, and investigating such topics as population synchrony, species interactions, and environmental drivers. We believe that these ideas and methods provide a useful conceptual framework for surveillance monitoring and can be used with model systems to draw inferences about the design of surveillance monitoring programs. In addition, some of the current methods should be useful with some actual ecological monitoring data, and methodological extensions and modifications should increase the applicability of these approaches to additional sources of actual ecological data.

Keywords

37M10 Time-Series Analysis 37M99 Computational Methods 37N99 Application of Dynamical Systems 92D40 Ecology 

Notes

Acknowledgments

We acknowledge the support of Paul Dresler and US Geological Survey inventory and monitoring program for research on these topics.

References

  1. ABB06.
    Allesina, S., Bodini, A., Bondavalli, C.: Ecological subsystems via graph theory: the role of strongly connected components. Oikos 110, 164–176 (2005)CrossRefGoogle Scholar
  2. BJP09.
    Bauer B., Jordan, F., Podani, J.: Node centrality indices in food webs: rank orders versus distributions. Ecol. Complexity (in press)Google Scholar
  3. BIL99.
    Bjornstad, O.N., Ims, A.R., Lambin, X.: Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol. Evol. 14, 427–432 (1999)CrossRefGoogle Scholar
  4. Bou01.
    Boudjema, G., Cazelles, B.: Extraction of nonlinear dynamics for short and noisy time series. Chaos Solutions Fractals 12, 2051–2069 (2001)MATHCrossRefGoogle Scholar
  5. Bou96.
    Boudjema, G., Chau, N.P.: Revealing dynamics of ecological systems from natural recordings. Ecol. Model. 91, 15–23 (1996)CrossRefGoogle Scholar
  6. CGC06.
    Cartozo, C.C., Garlaschelli, D., Caldarelli, G.: Graph theory and food webs, In: Pascual, M, Dunne, J.A. (eds.) Ecological Networks, SFI Studies in the Sciences of Complexity. Oxford University Press, Oxford, UK (2006)Google Scholar
  7. Cas92.
    Casdagli, M.: A dynamical systems approach to modeling input-output systems, In: Casdagli, M., Eubank. S, (eds.) Nonlinear Modeling and Forecasting, SFI Studies in the Sciences of Complexity, vol. 12, pp. 265–281. Addison-Wesley, Reading, Massachusetts (1992)Google Scholar
  8. Caz04.
    Cazelles, B.: Symbolic dynamics for identifying similarity between rhythms of ecological time series. Ecol. Lett. 7, 755–763 (2004)CrossRefGoogle Scholar
  9. CS03.
    Cazelles, B, Stone, L.: Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003)CrossRefGoogle Scholar
  10. CT92.
    Cheng, B., Tong, H.: On consistent nonparametric order determination and chaos. J. Roy. Stat. Soc. B 54, 427–449 (1992)MathSciNetMATHGoogle Scholar
  11. CCDD95.
    Constantino, R.F., Cushing, J.M., Dennis, B., Desharnais, R.A.: Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375, 227–230 (1995)CrossRefGoogle Scholar
  12. CDCD97.
    Constantino, R.F., Desharnais, R.A., Cushing, J.M., Dennis, B.: Chaotic dynamics in an insect population. Science 275, 389–391 (1997)CrossRefGoogle Scholar
  13. CCDDH03.
    Cushing, J.M., Constantino, R.F., Dennis, B., Desharnais, R.A., Henson, S.M.: Chaos in ecology: experimental nonlinear dynamics. Academic Press, San Diego (2003)Google Scholar
  14. DDCC95.
    Dennis, B., Desharnais, R.A., Cushing, J.M., Constantino, R.F.: Nonlinear demographic dynamics: mathematical models, statistical methods, and biological experiments. Ecol. Monogr. 65, 261–281 (1995)CrossRefGoogle Scholar
  15. DDCC97.
    Dennis, B., Desharnais, R.A., Cushing, J.M., Constantino, R.F.: Transitions in population dynamics: equilibria to periodic cycles to aperiodic cycles. J. Anim. Ecol. 66, 704–729 (1997)CrossRefGoogle Scholar
  16. DS04.
    Domokos, G., Scheuring, I.: Discrete and continuous state population models in a noisy world. J. Theor. Biol. 227, 535–545 (2004)MathSciNetCrossRefGoogle Scholar
  17. EKR97.
    Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamic systems. Europhys. Lett. 4, 973–977 (1987)CrossRefGoogle Scholar
  18. ER95.
    Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)MathSciNetCrossRefGoogle Scholar
  19. ET95.
    Ellner, S, Turchin, P.: Chaos in a noisy world: new methods and evidence from time-series analysis. Am. Natur. 145, 343–375 (1995)CrossRefGoogle Scholar
  20. Fis47.
    Fisher, R.A., The Design of Experiments, 4th edn. Hafner, New York (1947)Google Scholar
  21. Fis58.
    Fisher, R.A.. Statistical Methods for Research Workers, 13th edn. Oliver and Boyd, London (1958)Google Scholar
  22. FS86.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)MathSciNetMATHCrossRefGoogle Scholar
  23. GC00.
    Gao, J., Cai, H.: On the structures and quantification of recurrence plots. Phys. Lett. A 270, 75–87 (2000)CrossRefGoogle Scholar
  24. HHETG93.
    Hastings, A., Hom, C.L., Ellner, S., Turchin, P., Godfray, H.C.J.: Chaos in ecology: is mother nature a strange attractor? Ann. Rev. Ecol. Syst. 24, 1–33 (1993)Google Scholar
  25. HM97.
    Hilborn, R., Mangel, M.: The Ecological Detective. Confronting Models with Data. Princeton University Press, Princeton (1997)Google Scholar
  26. Hur84.
    Hurlburt, S.H.: Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984)CrossRefGoogle Scholar
  27. IDCC03.
    Ives, A.R., Dennis, B., Cottingham, K., Carpenter, S.R.: Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003)CrossRefGoogle Scholar
  28. IB98.
    Iwanski, J.S., Bradley, E.: Recurrence plots of experimental data: to embed or not to embed. Chaos 8, 861–871 (1998)CrossRefGoogle Scholar
  29. JRP05.
    Jonzen, N., Rhodes, J.R., Possingham, H.P.: Trend detection in source-sink systems: when should sink habitats be monitored? Ecol. Appl. 15, 326–334 (2005)CrossRefGoogle Scholar
  30. Jor09.
    Jordan, F.: Keystone species and food webs. Phil. Trans. Soc. B 364, 1733–1741(2009)CrossRefGoogle Scholar
  31. JOBL08.
    Jordan, F., Okey, T.A., Bauer, B., Libralato, S.: Identifying important species: lining structure and function in ecological networks. Ecol Model. 216, 75–80 (2008)CrossRefGoogle Scholar
  32. KS02.
    Kaiser, A., Schreiber, T.: Information transfer in continuous processes. Phys. D 166, 43–52 (2002)MathSciNetMATHCrossRefGoogle Scholar
  33. KR02.
    Keeling, M.J., Rohani, P.: Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecol. Lett. 5, 20–29 (2002)CrossRefGoogle Scholar
  34. KSE04.
    Kocak, K., Saylan, L., Eitzinger, J.: Nonlinear prediction of near-surface temperature via univariate and multivariate time series embedding. Ecol. Model. 173, 1–7 (2004)CrossRefGoogle Scholar
  35. Koe99.
    Koenig, W.: Spatial autocorrelation of ecological phenomena. Trends Ecol. Evol. 14, 22–26 (1999)CrossRefGoogle Scholar
  36. Kul59.
    Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)MATHGoogle Scholar
  37. LVT88.
    Landres, P.B., Verner, J., Thomas, J.W.: Ecological uses of vertebrate indicator species: a critique. Con. Biol. 2, 316–328 (1988)CrossRefGoogle Scholar
  38. LEPNKSCS96.
    Little, S., Ellner, S., Pascual, M., Neubert, M., Kaplan, D., Sauer, T., Caswell, H., Solow, A.: Detecting nonlinear dynamics in spatio-temporal systems, example from ecological models. Phys. D 96, 321–333 (1996)CrossRefGoogle Scholar
  39. MZSM04.
    Manley, P.N., Zielinski, W.J., Schlesinger, M.D., Mori, S.R.: Evaluation of a multiple-species approach to monitoring species at the ecoregional scale. Ecol. Appl. 14, 296–310 (2004)CrossRefGoogle Scholar
  40. MK02.
    Marschinski, R., Kantz, H.: Analysing the information flow between financial time series: An improved estimator for transfer entropy. Eur. Phys. J. 30, 275–281 (2002)MathSciNetGoogle Scholar
  41. MWSK02.
    Marwan, N., Wessel, N., Schirdewan, A., Kurths, J.: Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66, Article Number 026702 (2002)Google Scholar
  42. May73.
    May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University press, Princeton, NJ (1973)Google Scholar
  43. Mil85.
    Milnor, J.: On the concept of attractor. Comm. Math. Phys. 99, 177–195 (1985)MathSciNetMATHCrossRefGoogle Scholar
  44. MCENN07.
    Moniz, L.J., Cooch, E.G., Ellner, S.P., Nichols, J.D., Nichols, J.M.: Application of information theory methods to food web reconstruction. Ecol. Model. 208, 145–158 (2007)CrossRefGoogle Scholar
  45. MNN07.
    Moniz, L.J., Nichols, J.D., Nichols, J.M.: Mapping the information landscape: discerning peaks and valleys for ecological monitoring. J. Biol. Phys. 33, 171–181 (2007)CrossRefGoogle Scholar
  46. MPNTW04.
    Moniz, L., Pecora, L., Nichols, J., Todd, M., Wait, J.R.: Dynamical assessment of structural damage using the continuity statistic. Int. J. Struct. Health Monit. 3, 199–212 (2004)CrossRefGoogle Scholar
  47. MP2008.
    Moniz, L., Peter, W.: Application of Nonlinear Data Analysis to Locating Disease Clusters. Proceedings of the 10th Experimental Chaos Conference Catania, Italy (2008) (to appear)Google Scholar
  48. Mor53.
    Moran, P.A.P.: The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology. Aust. J. Zool. 1, 291–298 (1953)Google Scholar
  49. Njd00.
    Nichols, J.D.: Monitoring is not enough: on the need for a model-based approach to migratory bird management. In: Bonney, R., Pashley, D.N., Cooper, R., Niles, L. (eds.) Strategies for Bird Conservation: The Partners in Flight Planning Process, pp. 121–123. Proceedings RMRS-P-16. U.S.D.A., Forest Service, Rocky Mountain Research Station, Ogden, Utah (2000)Google Scholar
  50. NW06.
    Nichols, J.D., Williams, B.K.: Monitoring for conservation. Trends Ecol. Evol. 21, 668–673 (2006)CrossRefGoogle Scholar
  51. Njm05.
    Nichols, J.M.: Inferences about information flow and dispersal for spatially extended population systems using time-series data. Proc. Roy. Soc. B 272, 871–876 (2005)CrossRefGoogle Scholar
  52. NMNPC05.
    Nichols, J.M., Moniz, L., Nichols, J.D., Pecora, L.M., Cooch, E.: Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics. Theor. Pop. Biol. 67, 9–21 (2005)MATHCrossRefGoogle Scholar
  53. NNTSTV04.
    Nichols, J.M., Nichols, C.J., Todd, M.D., Seaver, M., Trickey, S.T., Virgin, L.N.: Use of data-driven phase space models in assessing the strength of a bolted connection in a composite beam. Smart Materials Structures 13, 241–250 (2004)CrossRefGoogle Scholar
  54. NSTSP06.
    Nichols, J.M., Seaver, M., Trickey, S.T., Salvino, L.W., Pecora, D.L.: Detecting impact damage in experimental composite structures: an information-theoretic approach. J. Smart Materials Structures 15, 424–434 (2006)CrossRefGoogle Scholar
  55. NTS06.
    Nichols, J.M., Trickey, S.T., Seaver, M.: Damage detection using multivariaterecurrence quantification analysis. Mech. Syst. Signal Process. 20, 421–437 (2006)CrossRefGoogle Scholar
  56. Noo03.
    Noon, B.R.: Conceptual issues in monitoring ecological resources. In: Busch, D.E., Trexler, J.C. (eds.) Monitoring Ecosystems, pp. 27–71. Island Press, Washington, DC (2003)Google Scholar
  57. Nos90.
    Noss, R.F.: Indicators for monitoring biodiversity: a hierarchical approach. Con. Biol. 4, 355–364 (1990)CrossRefGoogle Scholar
  58. Odu71.
    Odum, E.P.: Fundamentals of Ecology, 3rd edn. Saunders, W.B., Philadelphia (1971)Google Scholar
  59. OY03.
    Ott, W., Yorke, J.A.: Learning about reality from observation. SIAM J. Appl. Dyn. Syst. 2, 297–322 (2003)MathSciNetMATHCrossRefGoogle Scholar
  60. PCFS87.
    Packard, N.H., Cruchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1987)CrossRefGoogle Scholar
  61. Pas93.
    Pascual, M.: Diffusion-induced chaos in a spatial predator–prey system. Proc. Roy. Soc. London B 251, 1–7 (1993)CrossRefGoogle Scholar
  62. PE0.
    Pascual, M., Ellner, S.P.: Linking ecological patterns to environmental forcing via nonlinear time series models. Ecology 81, 2767–2780 (2000)CrossRefGoogle Scholar
  63. Patt75.
    Patten, B.C.: Ecosystem linearization: an evolutionary design problem. Am. Natur. 109, 529–539 (1975)CrossRefGoogle Scholar
  64. PCH95.
    Pecora, L.M., Carroll, T.L., Heagy, J.F.: Statistics for mathematical properties of maps between time series embeddings. Phys. Rev. E 52, 3420–3439 (1995)CrossRefGoogle Scholar
  65. PCH97.
    Pecora, L.M., Carroll, T.L., Heagy, J.F.: Statistics for continuity and differentiability: an application to attractor reconstruction from time series. Fields Inst. Comm. 11, 49–62 (1997)MathSciNetGoogle Scholar
  66. PMNC07.
    Pecora, L.M., Moniz, M., Nichols, J.M., Carroll, T.L.: A unified approach to attractor reconstruction. Chaos 17, 013110–013110–9 (2007)Google Scholar
  67. PSWM00.
    Perry, J.N., Smith, R.H., Woiwood, I.P., Morse, D.R. (eds.): Chaos in Real Data. Kluwer, Boston (2000)Google Scholar
  68. PF02.
    Post, E., Forchammer, M.C.: Synchronization of animal population dynamics by large-scale climate. Nature 420, 168–171 (2002)CrossRefGoogle Scholar
  69. PT95.
    Prichard, D., Theiler, J.: Generalized redundancies for time series analysis. Phys. D 84, 476–493 (1995)MATHCrossRefGoogle Scholar
  70. Pul88.
    Pulliam, H.R.: Sources, sinks and population regulation. Am. Natur. 132, 652–661 (1988)CrossRefGoogle Scholar
  71. RKL98.
    Ranta, E., Kaitala, V., Lundberg, P.: Population variability in space and time: the dynamics of synchronous population fluctuations. Oikos 83, 376–382 (1998)CrossRefGoogle Scholar
  72. RO2008.
    Rohde, G.K, Nichols, J.M., Dissinger, B.M., Bucholtz, F.: Stochastic analysis of recurrence plots with applications to the detection of deterministic signals. Phys. D 237, 619–629 (2008)Google Scholar
  73. Sau04.
    Sauer, T.: Reconstruction of shared nonlinear dynamics in a network. Phys. Rev. Lett. 93, 198701 (2004)CrossRefGoogle Scholar
  74. SY91.
    Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1991)MathSciNetMATHCrossRefGoogle Scholar
  75. Sch81.
    Schaffer, W.M.: Ecological abstraction: the consequences of reduced dimensionality in ecological models. Ecol. Monogr. 51, 383–401 (1981)CrossRefGoogle Scholar
  76. SEK86.
    Schaffer, W., Ellner, S., Kot, M.: Effects of noise on some dynamical models of ecology. J. Math. Biol. 24, 479–523 (1986)MathSciNetMATHCrossRefGoogle Scholar
  77. SG93.
    Scheiner, S.M., Gurevitz, J. (eds.): Design and Analysis of Ecological Experiments. Chapman and Hall, New York (1993)Google Scholar
  78. SSCBS96.
    Schiff, S.J., So, P., Chang, T., Burke, R.E., Sauer, T.: Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E 54, 6708–6724 (1996)CrossRefGoogle Scholar
  79. Sch99.
    Schreiber, T.: Interdisciplinary application of nonlinear time series methods. Phys. Rep. 308, 1–64 (1999)MathSciNetCrossRefGoogle Scholar
  80. Sch00.
    Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)Google Scholar
  81. SS2000.
    Schreiber, T., Schmitz, A.: Surrogate time series. Phys. D 142, 346–382 (2000)MathSciNetMATHGoogle Scholar
  82. Sim98.
    Simberloff, D.: Flagships, umbrellas, and keystones: is single-species management pass in the landscape era? Biol. Cons. 83, 247–57 (1998)CrossRefGoogle Scholar
  83. SR92.
    Skalski, J.R., Robson, D.S.: Techniques for Wildlife Investigations. Academic Press, San Diego (1992)Google Scholar
  84. SBDH97.
    Stark, J., Broomhead, D.S., Davies, M.E., Huke, J.: Takens embedding theorem for forced and stochastic systems. Nonlinear Anal. 30, 5303–5314 (1997)MathSciNetMATHCrossRefGoogle Scholar
  85. Sta99.
    Stark, J.: Delay embeddings of forced systems I: Deterministic forcing. J. Nonlinear Sci. 9, 255–332 (1999)MathSciNetMATHCrossRefGoogle Scholar
  86. SBDH03.
    Stark, J., Broomhead, D.S., Davies, M.E., Huke, J.: Delay embeddings of forced systems II: Stochastic forcing. J. Nonlinear Sci. 13, 519–577 (2003)MathSciNetCrossRefGoogle Scholar
  87. Str94.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, Reading Massachusetts (1994)Google Scholar
  88. Tak81.
    Takens, F.: Detecting strange attractors in turbulence, In: Rand, D.A., Young L.S. (eds.) Dynamical Systems and Turbulence, vol. 898, pp. 366–381. Lecture Notes in Mathematics Springer, Berlin (1981)CrossRefGoogle Scholar
  89. Tho02.
    Thompson, S.K.: Sampling. Wiley, New York (2002)MATHGoogle Scholar
  90. TGZW96.
    Trulla, L.L., Giuliani, A., Zbilut, J.P., Webber, C.L., Jr.: Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 223, 255–260 (1996)MathSciNetMATHCrossRefGoogle Scholar
  91. Tur03.
    Turchin, P.: Complex population dynamics. Princeton University Press, Princeton (2003)MATHGoogle Scholar
  92. TE00.
    Turchin, P., Ellner, S.P.: Modelling time series data. In: Perry, J.N., Smith, R.H., Woiwood, I.P., Morse, D. (eds.) Chaos in Real Data, pp. 33–48. Kluwer, Dordrecht, The Netherlands (2000)Google Scholar
  93. VSw88.
    Vastano, J.A., Swinney, H.L.: Information transport in spatiotemporal systems. Phys. Rev. Lett. 60, 1773–1776 (1988)MathSciNetCrossRefGoogle Scholar
  94. VSi02.
    Vazquez, D.P., Simberloff, D.: Ecological specialization and susceptibility to disturbance: conjectures and refutations. Am. Natur. 159, 606–623 (2002)CrossRefGoogle Scholar
  95. WZ94.
    Webber, C.L., Jr., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973 (1994)Google Scholar
  96. Whi36.
    Whitney, H.: Differentiable manifolds. Ann. Math. 37, 645–680 (1936)MathSciNetCrossRefGoogle Scholar
  97. WR99.
    Wikle, C.K., Royle, J.A.: Space-time dynamic design of environmental monitoring networks. J. Agric. Biol. Environ. Stat. 4, 489–507 (1999)MathSciNetCrossRefGoogle Scholar
  98. WR05.
    Wikle, C.K., Royle, J.A.: Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data. Environmetrics 16, 507–522 (2005)MathSciNetCrossRefGoogle Scholar
  99. Wil82.
    Williams, B.K.: Optimal stochastic control in natural resource management: framework and examples. Ecol. Model. 16, 275–297 (1982)CrossRefGoogle Scholar
  100. Wil89.
    Williams, B.K.: Review of dynamic optimization methods in renewable natural resource management. Natur. Resour. Model. 3, 137–216 (1989)MATHGoogle Scholar
  101. Wil96.
    Williams, B.K.: Adaptive optimization and the harvest of biological populations. Math. Biosci. 136, 1–20 (1996)MATHCrossRefGoogle Scholar
  102. WNC02.
    Williams, B.K., Nichols, J.D., Conroy, M.J.: Analysis and Management of Animal Populations. Academic Press, San Diego (2002)Google Scholar
  103. Wil97.
    Williams, G.P.: Chaos Theory Tamed. Joseph Henry Press, Washington, D.C (1997)MATHGoogle Scholar
  104. YNB01.
    Yoccoz, N.G., Nichols, J.D., Boulinier, T.: Monitoring of biological diversity in space and time. Trends Ecol. Evol. 16, 446–453 (2001)CrossRefGoogle Scholar
  105. Yul27.
    Yule, G.U.: On a method of investigating periodicities in disturbed series, with special reference to Wolfes sunspot numbers. Phil. Trans. Roy. Soc. London A 226, 267–298 (1927)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. J. Moniz
    • 1
  • J. D. Nichols
    • 2
  • J. M. Nichols
    • 3
  • E. G. Cooch
    • 4
  • L. M. Pecora
    • 5
  1. 1.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  2. 2.Patuxent Wildlife Research CenterU.S. Geological SurveyLaurelUSA
  3. 3.Optical Sciences DivisionNaval Research LaboratoryWashingtonUSA
  4. 4.Department of Natural ResourcesCornell UniversityIthacaUSA
  5. 5.Naval Research LaboratoryWashingtonUSA

Personalised recommendations