The Central Role of Information Theory in Ecology



Information theory (IT) is predicated upon that which largely eludes physics – the absence of something. The capacity for IT to portray both presence and absence in comparable quantitative fashion makes it indispensable to ecology. IT has been applied to ecology along two separate lines: (1) it has been used to quantify the distribution of stocks and numbers of organisms and (2) it has been used to quantify the pattern of interactions of trophic processes. By and large, the first endeavor has resulted in relatively few insights into ecosystem dynamics and has generated much ambiguity and disappointment, so that most ecologists remain highly skeptical about the advisability of applying IT to ecology. By contrast, the second (and less well-known) application has shed light on the possibility that ecosystem behavior is the most palpable example of a purely natural “infodynamics” that transcends classical dynamics, but remains well within the realm of the quantifiable.


Ecological networks Feedback control Information measures Robust stabilization Sensitivity analysis Sustainability Theory of organization 


  1. Abr63.
    Abramson, N.: Information Theory and Coding. McGraw-Hill, New York (1963)Google Scholar
  2. Bat72.
    Bateson, G.: Steps to an Ecology of Mind. Ballantine Books, New York (1972)Google Scholar
  3. Bol72.
    Boltzmann, L.: Weitere Studien ueber das Waermegleichtgewicht unter Gasmolekuelen. Wien. Ber. 66, 275–370 (1872)Google Scholar
  4. BW86.
    Brooks, D.R., Wiley, E.O.: Evolution as Entropy: Toward a Unified Theory of Biology. University Chicago Press, Chicago (1986)Google Scholar
  5. Col90.
    Collier, J.D.: Intrinsic information. In: Hanson, P.P. (ed.) Information, Language and Cognition: Vancouver Studies in Cognitive Science, Vol. 1, pp. 390–409. University of British Columbia Press, Vancouver (1990)Google Scholar
  6. Dea06.
    Deacon, T.W.: Emergence: The hole at the wheel’s hub. In: Clayton, P., Davies, P. (eds.) The Re-emergence of Emergence: The Emergentist Hypothesis, pp. 111–149. Oxford University Press, London (2006)Google Scholar
  7. Els81.
    Elsasser, W.M.: A form of logic suited for biology. In: Robert Rosen (ed.) Progress in Theoretical Biology, pp. 23–62. Academic Press, New York (1981)Google Scholar
  8. GA70.
    Gardner, M.R., Ashby, W.R.: Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228, 784–784 (1970)CrossRefGoogle Scholar
  9. GLU09.
    Goerner, S.J., Lietaer, B., Ulanowicz, R.E., Gomez, R.: Quantifying economic sustainability: implications for free-enterprise theory, policy and practice. Ecol. Econ. 69, 76–81 (2009)CrossRefGoogle Scholar
  10. Has84.
    Hastings, H.M.: Stability of large systems. BioSystems 17, 171–177 (1984)MathSciNetGoogle Scholar
  11. Hof93.
    Hoffmeyer, J.: Signs of Meaning in the Universe. Indiana University Press, Bloomington, Indiana (1993)Google Scholar
  12. Hof08.
    Hoffmeyer, J.: Biosemiotics: Signs of Life and Life of Signs. University of Scranton Press, Scranton, Pennsylvannia (2008)Google Scholar
  13. Hol86.
    Holling, C.S.: The resilience of terrestrial ecosystems: local surprise and global change. In: Clark, W.C., Munn, R.E. (eds.) Sustainable Development of the Biosphere, pp. 292–317. Cambridge University Press, Cambridge, UK (1986)Google Scholar
  14. JFB07.
    Jørgensen, S.E., Fath, B.D., Bastianoni, S., Marques, J., Mueller, F., Nors-Nielsen, S., Patten, B.C., Tiezzi, E., Ulanowicz, R.E.: A New Ecology: Systems Perspective. Elsevier, Amsterdam (2007)Google Scholar
  15. Lin42.
    Lindeman, R.L.: The trophic-dynamic aspect of ecology. Ecology 23, 399–418 (1942)Google Scholar
  16. Mac55.
    MacArthur, R.: Fluctuations of animal populations, and a measure of community stability. Ecology 36, 533–536 (1955)CrossRefGoogle Scholar
  17. Mar57.
    Margalef, R.: La teoria de la informacion en ecologia. Mem. Real Acad. Ciencias Artes Barcelona 32(13), 373–449 (1957)Google Scholar
  18. Mar61.
    Margalef, R.: Communication of structure in planktonic populations. Limnol. Oceanog. 6, 124–128 (1961)CrossRefGoogle Scholar
  19. May73.
    May, R.M.: Stability and Complexity in Model Ecosystems, p. 235. Princeton University Press, Princeton, NJ (1973)Google Scholar
  20. Odu53.
    Odum, E.P.: Fundamentals of Ecology. Saunders, Philadelphia (1953)Google Scholar
  21. Odu59.
    Odum, E.P.: Fundamentals of Ecology, 2nd edn. Sanders, Philadelphia, PA (1959)Google Scholar
  22. Odu69.
    Odum, E.P.: The strategy of ecosystem development. Science 164, 262–270 (1969)Google Scholar
  23. OP55.
    Odum, H.T., Pinkerton, R.C.: Time’s speed regulator: the optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 43, 331–343 (1955)Google Scholar
  24. Pah92.
    Pahl-Wostl, C.: Information theoretical analysis of functional temporal and spatial organization in flow networks. Math. Comput. Modell. 16(3), 35–52 (1992)MATHCrossRefGoogle Scholar
  25. Pie69.
    Pielou. E.C.: An Introduction to Mathematical Ecology. Wiley-Interscience, New York (1969)Google Scholar
  26. RBM76.
    Rutledge, R.W., Basorre, B.L., Mulholland, R.J.: Ecological stability: an information theory viewpoint. J. Theor. Biol. 57, 355–371 (1976)CrossRefGoogle Scholar
  27. SCO99.
    SCOPE: Ecosystem ascendancy and nutrient dynamics. SCOPE Newslett. 93, 4–5 (1999)Google Scholar
  28. Sha48.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetMATHGoogle Scholar
  29. Sim49.
    Simpson, E.H.: Measurement of diversity. Nature 163, 688 (1949)MATHGoogle Scholar
  30. SV04.
    Solé, R.V., Valverde, S.: Information theory of complex networks: On evolution and architectural constraints. Lect. Notes Phys. 650, 189–207 (2004)Google Scholar
  31. TD94.
    Tilman, D., Downing, J.A.: Biodiversity and stability in grasslands. Nature 367, 363–365 (1994)Google Scholar
  32. TM71.
    Tribus, M., McIrvine, E.C.: Energy and information. Sci. Am. 225, 179–188 (1971)Google Scholar
  33. Ula80.
    Ulanowicz, R.E.: An hypothesis on the development of natural communities. J. Theor. Biol. 85, 223–245 (1980)CrossRefGoogle Scholar
  34. Ula97.
    Ulanowicz, R.E.: Ecology, the Ascendent Perspective. Columbia University Press, NY (1997)Google Scholar
  35. Ula99.
    Ulanowicz, R.E.: Life after Newton: An ecological metaphysic. BioSystems 50, 127–142 (1999)CrossRefGoogle Scholar
  36. Ula00a.
    Ulanowicz, R.E.: Toward the measurement of ecological integrity. In: Pimentel, D., Westra, L., Noss, R.F. (eds), Ecological Integrity: Integrating Environment, Conservation and Health, pp. 99–113. Island Press, Washington, DC (2000)Google Scholar
  37. Ula00b.
    Ulanowicz, R.E.: Quantifying constraints upon trophic and migratory transfers in spatially heterogeneous ecosystems. In: Sanderson, J., Harris, L.D. (eds.) Series in Landscape Ecology: A Top-Down Approach, pp. 113–142. Lewis Publications, Boca Raton, FL (2000)Google Scholar
  38. Ula01.
    Ulanowicz, R.E.: Information theory in ecology. Comput. Chem. 25, 393–399 (2001)Google Scholar
  39. Ula02.
    Ulanowicz, R.E.: The balance between adaptability and adaptation. BioSystems 64, 13–22 (2002)CrossRefGoogle Scholar
  40. UA97.
    Ulanowicz, R.E., Abarca-Arenas, L.G.: An informational synthesis of ecosystem structure and function. Ecol. Model. 95, 1–10 (1997)CrossRefGoogle Scholar
  41. UB99.
    Ulanowicz, R.E., Baird, D.: Nutrient controls on ecosystem dynamics: The Chesapeake mesohaline community. J. Mar. Sci. 19, 159–172 (1999)Google Scholar
  42. UGL09.
    Ulanowicz, R.E., Goerner, S.J., Lietaer, B., Gomez, R.: Quantifying sustainability: resilience, efficiency and the return of information theory. Ecol. Complex. 6, 27–36 (2009)CrossRefGoogle Scholar
  43. UN90.
    Ulanowicz, R.E., Norden, J.: Symmetrical overhead in flow networks. Int. J. Syst. Sci. 21(2), 429–437 (1990)MATHCrossRefGoogle Scholar
  44. VOE80.
    Van Voris, P., O’Neill, R.V., Emanuel, W.R., Shugart, H.H. Jr.: Functional complexity and ecosystem stability. Ecology 61, 1352–1360 (1980)Google Scholar
  45. WDD89.
    Weber, B.H., Depew, D.J., Dyke, C., Salthe, S.N., Schneider, E.D., Ulanowicz, R.E., Wicken, J.S.: Evolution in thermodynamic perspective. Biol. Phil. 4, 373–405 (1989)Google Scholar
  46. Wig59.
    Wigner, E.P.: Statistical properties of real symmetric matrices with many dimensions. In: Proceedings of the Fourth Canadian Mathematical Congress, Toronto 174 (1959)Google Scholar
  47. WS69.
    Woodwell, G.M., Smith, H.H.: Diversity and Stability in Ecological Systems, p. 22. U.S. Brookhaven Symp. Biol., NY (1969)Google Scholar
  48. ZU03.
    Zorach, A.C., Ulanowicz, R.E.: Quantifying the complexity of flow networks: How many roles are there? Complexity 8(3), 68–76 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiologyUniversity of FloridaGainesvilleUSA
  2. 2.University of Maryland Center for Environmental ScienceSolomonsUSA

Personalised recommendations