On the Development and Application of Net-Sign Graph Theory

  • Prabhat K. Sahu
  • Shyi-Long Lee


This report briefly describes the development and applications of net-sign graph theory. The current work enunciates the graph (molecule) signature of non-alternant non-benzenoid hydrocarbons with odd member of rings (non-bipartite molecular graphs) based on chemical signed graph theory. Experimental evidences and Hückel spectrum reveal that structure possessing nonbonding molecular orbital (NBMOs) is very unstable and highly reactive under the drastic conditions of low temperature. Chemical signed graph theoretical approach is applied successfully to classify the non-bipartite molecular graphs with a view to Randic’s conjugated circuit models based on their spectral characteristic. The obtained results based on net-sign approach are compared with those obtained using Hückel calculations.


Net-sign graphs Non-bipartite molecular graphs Spectral characteristic 



We are thankful to Milan Randic for his suggestions. This research is supported by National Science Council, Taiwan.


  1. 1.
    Prelog, V.: Nobel lecture (December 1975). reprinted in Science 193, 17 (1976)Google Scholar
  2. 2.
    Cyvin, S.J.: The number of Kekule structures for primitive coronoids(cycloarenes). Chem. Phys. Lett. 147, 384–388 (1988)CrossRefGoogle Scholar
  3. 3.
    Aboav, D., Gutman, I.: Estimation of the number of benze-noid hydrocarbons. Chem. Phys. Lett. 148, 90–92 (1988)CrossRefGoogle Scholar
  4. 4.
    Kier, L.B., Hall, L.H.: Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York (1976)Google Scholar
  5. 5.
    Trinajstii, N.: Chemical Graph Theory, Chap. 4, Vol. 2. CRC Press, Boca Raton, FL (1983)Google Scholar
  6. 6.
    Kier, L.B., Hall, L.H.: Molecular Connectivity in Structure-Activity Analysis. Wiley, New York (1986)Google Scholar
  7. 7.
    Read, R.C., BaIaban, A.T. (eds.): Chemical Applications of Graph Theory, Chap. 4. Academic Press, New York (1976)Google Scholar
  8. 8.
    Balaban, A.T., BaIaban, A.T. (eds.): Chemical Applications of Graph Theory, Chap. 5. Academic Press, New York (1976)Google Scholar
  9. 9.
    Gielen, M., BaIaban, A.T. (eds.): Chemical Applications of Graph Theory, Chap. 9. Academic Press, New York (1976)Google Scholar
  10. 10.
    King, R.B., Rouvray, D.H.: Chemical applications of topology and group theory. Theoret. Chim. Acta 69, 1–10 (1986)CrossRefGoogle Scholar
  11. 11.
    King, R.B.: Chemical bonding topology of bare post-transition-metal clusters: analogies between condensed-phase and gas-phase species. J. Phys. Chem. 92, 4452–4456 (1988)CrossRefGoogle Scholar
  12. 12.
    El-Basil, S.: Combinatorial Clar sextet theory: on valence-bond method of Herndon and Hosoya. Theor. Chim. Acta 70, 53–65 (1986)CrossRefGoogle Scholar
  13. 13.
    Cyvin, S.J., Cyvin, B.N., Brunvoll, J.: Half essentially disconnected coronoid hydrocarbons. Chem. Phys. Lett. 140, 124–129 (1987)CrossRefGoogle Scholar
  14. 14.
    Arteca, G.A., Mezey, P.G.: A topological characterization for simple molecular surfaces. J. Mol. Struct. (Theochem) 166, 11–16 (1988)Google Scholar
  15. 15.
    Fernandez, A.: Pattern of separatrices and intrinsic reaction coordinates for degenerate thermal rearrangements. Theor. Chim. Acta 67, 229–233 (1985)CrossRefGoogle Scholar
  16. 16.
    Sakamoto, A., Kawakami, H., Yoshikawa, K.: A graph theoretical approach to complex reaction networks. Chem. Phys. Lett. 146, 444–448 (1988)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Randic, M.: Symmetry properties of chemical graphs. VIII. On complementarity of isomerization modes. Theor. Chim. Acta 67, 137–155 (1985)Google Scholar
  18. 18.
    King, R.B., Reich1, L.E., Schieve, W.C. (eds.): Instabilities, Bifurcations, and Fluctuations in Chemical Systems, p. 47. University of Texas Press, Austin (1982)Google Scholar
  19. 19.
    Lee, S.L., Lucchese, R.R., Chu, S.Y.: Topological analysis of eigenvectors of the adjacency matrices in graph theory: The concept of internal connectivity. Chem. Phys. Lett. 137, 279 (1987)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gunthard, H.H., Primas, H.: Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta 39, 1645–1653 (1956)CrossRefGoogle Scholar
  21. 21.
    Trinajstic, N., Segal, G.A. (eds.): Semiempirical Methods of Electronic Structure Calculation. Part A. Techniques, Vol. 7, p. 1. Plenum Press, New York (1977)Google Scholar
  22. 22.
    Ruedenburg, K.: Quantum mechanics of mobile electrons in conjugated bond systems. I. General analysis in the tight-binding formulation. J. Chem. Phys. 34, 1861–1877 (1961)Google Scholar
  23. 23.
    Schmidtke, H.H.: LCAO description of symmetric molecules by unified theory of finite graphs. J. Chem. Phys. 45, 3920–3928 (1966)CrossRefGoogle Scholar
  24. 24.
    Lee, S.L., Li, F.Y.: Net sign approach in graph spectral theory. J. Mol. Struct. (Theochem) 207, 301–317 (1991)Google Scholar
  25. 25.
    Lee, S.L., Li, C.: Chemical signed graph theory. Int. J. Quant. Chem. 49, 639–648 (1994)CrossRefGoogle Scholar
  26. 26.
    Lee, S.L., Gutman, I.: Topological analysis of the eigenvectors of the adjacency matrices in graph theory: Degenerate case. Chem. Phys. Lett. 157, 229–232 (1989)CrossRefGoogle Scholar
  27. 27.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory, Course of Theoretical Physics, 3rd edn., Vol. 3, p. 60. Pergamon Press, New York (1977)Google Scholar
  28. 28.
    Levine, I.N.: Quantum Chemistry. Allyn and Bacon, Boston, MA (1974)Google Scholar
  29. 29.
    Wilson, E.B.: Symmetry, nodal surfaces, and energy ordering of molecular orbitals. J. Chem. Phys. 63, 4870–4879 (1975)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lee, S.L., Li, F.Y., Lin, F.: Topological analysis of eigenvalues of particle in one- and two-dimensional simple quantal systems: net sign approach. Int. J. Quant. Chem. 39, 59–70 (1991)CrossRefGoogle Scholar
  31. 31.
    Heilbronner, E., Straub, P.A.: Slide rule computation of Hueckel molecular orbitals. Tetrahedron 23, 845–862 (1967)CrossRefGoogle Scholar
  32. 32.
    Herndon, W.C., Silber, E.: Simplified molecular orbitals for organic molecules. J. Chem. Educ. 48, 502–508 (1971)CrossRefGoogle Scholar
  33. 33.
    Lee, S.L., Yeh, Y.N.: Topological analysis of some special of graphs: Hypercubes. Chem. Phys. Lett. 171, 385–388 (1990)CrossRefGoogle Scholar
  34. 34.
    Lee, S.L., Luo, Y.L., Sagan, E.B.: Eigenvector and eigenvalues of some special graphs. IV. Multilevel circulants, Yeh. Int. J. Quant. Chem. 41, 105–116 (1992)Google Scholar
  35. 35.
    Lee, S.L., Yeh, Y.N.: On Eigenvalues and Eigenvactors of graphs. J. Math. Chem. 12, 121–135 (1993)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Gutman, I., Lee, S.L., Yeh, Y.N.: Net signs of molecular graphs: dependence on molecular structure. Int. J. Quant. Chem. 49, 87–95 (1994)CrossRefGoogle Scholar
  37. 37.
    Dehmer, M.: Information theoretic concepts for the analysis of complex networks. Appl. Artif. Intell. 22, 684–706 (2008)CrossRefGoogle Scholar
  38. 38.
    Gutman, I.: Topological analysis of Eigenvalues of the adjacency matrices in graph theory: A difficulty with the concept of internal connectivity. Chem. Phys. Lett. 148, 93–94 (1988)CrossRefGoogle Scholar
  39. 39.
    Coulson, C.A., Streitwieser, A.: Dictionary of π-electron calculations. Freeman, San Francisco, CA (1965)Google Scholar
  40. 40.
    Lee, S.L.: Topological analysis of five-vertex clusters of group IVA elements. Theo. Chim. Acta. 81, 185–199 (1992)CrossRefGoogle Scholar
  41. 41.
    Gutman, I., Lee, S.L., Yeh, Y.N.: Net signs and Eigenvalues of molecular graphs: some analogies. Chem. Phys. Lett. 191, 87–91 (1992)CrossRefGoogle Scholar
  42. 42.
    Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)CrossRefGoogle Scholar
  43. 43.
    Wiener, H.: Influence of interatomic forces on paraffin properties. J. Chem. Phys. 15, 766 (1947)CrossRefGoogle Scholar
  44. 44.
    Morowitz, H.: Some order-disorder considerations in living systems. Bull. Math. Biophys. 17, 81–86 (1953)CrossRefGoogle Scholar
  45. 45.
    Quastler, H.: Information Theory in Biology. University of Illinois Press, Urbana (1953)Google Scholar
  46. 46.
    Dancoff, S.M., Quastler, H.: Information content and error rate of living things. In: Quastler, H. (eds.) Essays on the Use of Information Theory in Biology, pp. 263–274. University of Illinois Press, Urbana (1953)Google Scholar
  47. 47.
    Linshitz, H.: The information content of a battery cell. In: Quastler, H. (eds.) Essays on the Use of Information Theory in Biology. University of Illinois Press, Urbana (1953)Google Scholar
  48. 48.
    Mowshowitz, A.: Entropy and the complexity of graphs i: An index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Mowshowitz, A.: The information content of digraphs and infinite graphs. Bull. Math. Biophys. 30, 225–240 (1968)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Mowshowitz, A.: Graphs with prescribed information content. Bull. Math. Biophys. 30, 387–414 (1968)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Mowshowitz, A.: Entropy measures and graphical structure. Bull. Math. Biophys. 30, 533–546 (1968)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Rashewsky, N.: Life, information theory, and topology. Bull. Math. Biophys. 17, 229–235 (1955)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Balaban, A.T.: Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404 (1982)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Randic’, M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)Google Scholar
  55. 55.
    Kier, L.B., Hall, L.H., Murray, W.J., Randic’, M.: Molecular connectivity I: Relationship to nonspecific local anesthesia. J. Pharm. Sci. 64, 1971–1974 (1975)Google Scholar
  56. 56.
    Bonchev, D., Trinajstic, N.: On topological characterization of molecular branching. Int. J. Quant. Chem. Symp. 12, 293–303 (1978)Google Scholar
  57. 57.
    Bonchev, D., Balaban, A.T., Mekenyan, A.: Generalization of the graph center concept, and derived topological centric indexes. J. Chem. Inf. Comput. Sci. 20, 106–113 (1980)Google Scholar
  58. 58.
    Gutman, I., Ruscic, B., Trinajstic, N., Wilcox, C.F. Jr.: Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 62, 3399–3405 (1975)Google Scholar
  59. 59.
    Hosoya, H.: Rydberg orbitals. IV. Basic formulas for the one-electron perturbation calculation of molecular Rydberg excited states. Int. J. Quant. Chem. 6, 801–817 (1972)Google Scholar
  60. 60.
    Basak, S.C., Gute, B.D., Grunwald, G.D.: A comparative study of topological and geometrical parameters in estimating normal boiling point and octanol/water partition coefficient. J. Chem. Inf. Comput. Sci. 36, 1054–1060 (1996)Google Scholar
  61. 61.
    Bonchev, D.: “Information Theoretic Indices for Characterization of Chemical Structure”. Wiley InterScience, New York (1983)Google Scholar
  62. 62.
    Balaban, A.T. (ed.): “From Chemical Topology to 3D Molecular Geometry”. Plenum Press, New York (1997)Google Scholar
  63. 63.
    Kubinyi, H., Folkers, G., Martin, Y.C. (eds.): “3D QSAR in Drug Design”, Vol. 1, 2, 3. Kluwer/ESCOM (1996–98)Google Scholar
  64. 64.
    Karelson, M.: “Molecular Descriptors in QSAR/QSPR”. Wiley-Interscience, New York (2000)Google Scholar
  65. 65.
    Todeschini, R., Consonni, V.: “Handbook of Molecular Descriptors”. Wiley-VCH, Weinheim, Germany (2000)CrossRefGoogle Scholar
  66. 66.
    Sahu, P.K., Lee, S.L.: Novel information theoretic topological index Ik for unsaturated hydrocarbons. Chem. Phys. Lett. 396, 465–468 (2004)CrossRefGoogle Scholar
  67. 67.
    Sahu, P.K., Lee, S.L.: Net-sign identity information index: a novel approach towards numerical characterization of chemical signed graph theory. Chem. Phys. Lett. 454, 133–138 (2008)CrossRefGoogle Scholar
  68. 68.
    Lloyd, D.: The chemistry of cyclic conjugated compounds: to be or not to be like benzene? Wiley, Chichester (1989)Google Scholar
  69. 69.
    Lin, C.Y., Krantz, A.: Matrix preparation of cyclobutadiene. J. Chem. Soc. Chem. Commun. 1111–1112 (1972)Google Scholar
  70. 70.
    Bochvar, D.A., Stankevich, I.V., Tutkevich, A.V.: izv akad nauk ussr. Seria Khim 1185 (1969)Google Scholar
  71. 71.
    Bochvar, D.A., Gal’pern, E.G.: izv akad nauk ussr. Seria Khim 1327 (1972)Google Scholar
  72. 72.
    Bochvar, D.A., Stankevich, I.V.: Zh Strukt Khim 13, 1123 (1972)Google Scholar
  73. 73.
    Gutman, I., Trinajstic, N.: Graph-theoretical classifications of conjugated hydrocarbons. Naturwissenschaften 60, 475–475 (1973)Google Scholar
  74. 74.
    Groavac, A., Gutman, I., Trinajstic, N., Zivkovic, T.: Graph theory and molecular orbitals. Application of Sachs theorem. Theor. Chim. Acta. Berlin 26, 67–78 (1972)CrossRefGoogle Scholar
  75. 75.
    Cvetkovic, D., Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. Croat. Chem. Acta. 44, 365–374 (1972)Google Scholar
  76. 76.
    Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)Google Scholar
  77. 77.
    Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. IV. Further application of Sachs formula. Croat. Chem. Acta. 45, 423–429 (1973)Google Scholar
  78. 78.
    Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. V. Loop rule. Chem. Phys. Lett. 20, 257–260 (1973)Google Scholar
  79. 79.
    Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. Forschritte Chem Forschung (Topics in current chemistry) 42, 49–93 (1973)Google Scholar
  80. 80.
    Gutman, I., Trinajstic, N., Zivkovic, T.: Graph theory and molecular orbitals. VI. Discussion of nonalternant hydrocarbons. Tetrahedron 29, 3449–3454 (1973)Google Scholar
  81. 81.
    Gutman, I.: On the number of antibonding MO’s in conjugated hydrocarbons. Chem. Phys. Lett. 26, 85–88 (1974)CrossRefGoogle Scholar
  82. 82.
    Trinajstic, N.: Chemical Graph Theory, vol. 1. CRC, Boca Raton, Florida (1983)Google Scholar
  83. 83.
    Randic, M.: Aromaticity and conjugation. J. Am. Chem. Soc. 99, 444–450 (1977)CrossRefGoogle Scholar
  84. 84.
    Randic, M.: A graph theoretical approach to conjugation and resonance energies of hydrocarbons. Tetrahedron 33, 1905–1920 (1977)CrossRefGoogle Scholar
  85. 85.
    Klein, D.J., Trinajstic, N.: Foundations of conjugated-circuits models. Pure. Appl. Chem. 61, 2107–2115 (1989)CrossRefGoogle Scholar
  86. 86.
    Randic, M.: Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449–3605 (2003)CrossRefGoogle Scholar
  87. 87.
    Balaban, A.T., Randic, M.: Partitioning of π-electrons in rings of polycyclic conjugated hydrocarbons. 5. Nonalternant compounds. J. Chem. Inf. Comput. Sci. 44, 1701–1707 (2004)Google Scholar
  88. 88.
    Jahn, H.A., Teller, E.: Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. In: Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 161 220–235 (1937)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institüt für Physikalische und Theoretische ChemieUniversität WürzburgWürzburgGermany
  2. 2.Department of Chemistry and BiochemistryNational Chung Cheng UniversityChia-YiTaiwan

Personalised recommendations