Skip to main content

Wave Localization on Complex Networks

  • Chapter
  • First Online:
Towards an Information Theory of Complex Networks

Abstract

In this chapter we consider the role played by Anderson localization in transport through complex networks, for example, an optical network. The network is described by a tight binding Hamiltonian, which may be used to determine the properties of the Anderson transition according to the statistical properties of its eigenvalues. The Anderson transition properties of different complex networks will be studied, emphasizing the role played by clustering on the localization of waves. We shall show that new complex topologies lead to novel physics, specifically clustering may lead to localization.

MSC2000 Primary 05C80; Secondary 90B18, 90B15, 05C50, 05C82.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The N dependence is well established [35] but the C 0 dependence seems to be unexplored. Our data for N up to 105 suggest \(\ln a \propto {\left ({C}_{0} - {C}_{0,c}\right )}^{-{\nu }_{c}}\). Since C 0, q < C 0, c, a and thus L depend weakly on C 0 at the quantum transition.

References

  1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  Google Scholar 

  2. Kramer, B., MacKinnon, A.: Localization – theory and experiment. Rep. Prog. Phys. 56, 1496–1564 (1993)

    Article  Google Scholar 

  3. Wiersma, D.S., Bartolini, P., Lagendijk, A., Righini, R.: Localization of light in disordered medium. Nature 390, 671–673 (1997)

    Article  Google Scholar 

  4. Störzer, M., Gross, P., Aegerter, C.M., Maret, G.: Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006)

    Article  Google Scholar 

  5. Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)

    Article  Google Scholar 

  6. Lahini, Y., Avidan, A., Pozzi, F., Sorel, M., Morandotti, R., Christodoulides, D.N., Silberberg, Y.: Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008)

    Article  Google Scholar 

  7. Foret, M., Courtens, E., Vacher, R., Suck, J.B.: Scattering investigation of acoustic localization in fused silica. Phys. Rev. Lett. 77, 3831–3834 (1996)

    Article  Google Scholar 

  8. Kantelhardt, J.W., Bunde, A., Schweitzer, L.: Extended fractons and localized phonons on percolation clusters. Phys. Rev. Lett. 81, 4907–4910 (1998)

    Article  Google Scholar 

  9. Billy, J., Josse, V., Zuo, Z.C., Bernard, A., Hambrecht, B., Lugan, P., Clement, D., Sanchez-Palencia, L., Bouyer, P., Aspect, A.: Direct obeservation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891 (2008)

    Article  Google Scholar 

  10. Roati, G., D’Errico, C., Fallani, L., Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., Inguscio, M.: Anderson localization of a non-interacting bose-einstein condensate. Nature 453, 895–898 (2008)

    Article  Google Scholar 

  11. Abrahams, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization – absence of quantum diffusion in 2 dimensions. Phys. Rev. Lett. 42, 673–676 (1979)

    Article  Google Scholar 

  12. Castellani, C., DiCastro, C., Peliti, L.: On the upper critical dimension in Anderson localization. J. Phys. A 19, 1099–1103 (1986)

    Article  Google Scholar 

  13. Kunz, H., Souillard, B.: On the upper critical dimension and the critical exponents of the localization transition. J. Phys. Lett. 44, L503–L506 (1983)

    Article  Google Scholar 

  14. Straley, J.P.: Conductivity near the localization threshold in the high-dimensionality limit. Phys. Rev. B 28, 5393 (1983)

    Article  Google Scholar 

  15. Lukes, T.: Critical dimensionality in the Anderson-Mott transition. J. Phys. C 12, L797 (1979)

    Article  Google Scholar 

  16. Efetov, K.B.: Anderson transition on a bethe lattice (the symplectic and orthogonal ensembles). Zh. Eksp. Teor. Fiz 93, 1125–1139 (1987) [Sov. Phys. JETP, 61, 606 (1985)]

    Google Scholar 

  17. Zhu, C.P., Xiong, S.-J.: Localization-delocalization transition of electron states in a disordered quantum small-world network. Phys. Rev. B 62, 14780 (2000)

    Article  Google Scholar 

  18. Giraud, O., Georgeot, B., Shepelyansky, D.L.: Quantum computing of delocalization in small-world networks. Phys. Rev. E 72, 036203 (2005)

    Article  Google Scholar 

  19. Gong, L., Tong, P.: von Neumann entropy and localization-delocalization transition of electron states in quantum small-world networks. Phys. Rev. E 74, 056103 (2006)

    Article  Google Scholar 

  20. Sade, M., Berkovits, R.: Localization transition on a cayley tree via spectral statistics. Phys. Rev. B 68, 193102 (2003)

    Article  Google Scholar 

  21. Sade, M., Kalisky, T., Havlin, S., Berkovits, R.: Localization transition on complex networks via spectral statistics. Phys. Rev. E 72, 066123 (2005)

    Article  Google Scholar 

  22. Shapiro, B.: Renormalization-group transformation for the Anderson transition. Phys. Rev. Lett. 48, 823–825 (1982)

    Article  Google Scholar 

  23. Anderson, P.W., Thouless, D.J., Abrahams, E., Fisher, D.S.: New Method for a scaling theory of localization. Phys. Rev. B 22, 3519–3526 (1980)

    Article  MathSciNet  Google Scholar 

  24. Edrei, I., Kaveh, M., Shapiro, B.: Probability-distribution functions for transmission of waves through random-media – a new numerical-method. Phys. Rev. Lett. 62, 2120–2123 (1989)

    Article  Google Scholar 

  25. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. PNAS 104, 11150–11154 (2007)

    Article  Google Scholar 

  26. Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the internet. Phys. Rev. E 65, 066130 (2002)

    Article  Google Scholar 

  27. Shklovskii, B.I., Shapiro, B., Sears, B.R., Lambrianides, P., Shore, H.B.: Statistics of spectra of disordered-systems near the metal-insulator-transition. Phys. Rev. B 47, 11487–11490 (1993)

    Article  Google Scholar 

  28. Hofstetter, E., Schreiber, M.: Relation between energy-level statistics and phase transition and its application to the Anderson model. Phys. Rev. E 49, 14726 (1994)

    Article  Google Scholar 

  29. For a recent review see: Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  30. Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)

    Google Scholar 

  31. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  32. Kalisky, T. , Cohen, R. , ben Avraham, D., Havlin, S.: Tomography and stability of complex networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Lecture Notes in Physics: Proceedings of the 23rd LANL-CNLS Conference, “Complex Networks”, Santa-Fe, 2003. Springer, Berlin (2004)

    Google Scholar 

  33. Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000)

    Article  Google Scholar 

  34. Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 86, 3682 (2001)

    Article  Google Scholar 

  35. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003)

    Article  Google Scholar 

  36. Bollobas, B., Riordan, O.: Mathematical results on scale-free random graphs. In: Bornholdt, S., Schuster, H.G. (eds.) Handboook of Graphs and Networks. Wiley-VCH, Berlin (2002)

    Google Scholar 

  37. Molloy, M., Reed, B.: The size of the giant component of a random graph with a given degree sequence. Combinator. Probab. Comput. 7, 295–305 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Berkovits, R., Avishai, Y.: Spectral statistics near the quantum percolation threshold. Phys. Rev. B 53, R16125–R16128 (1996)

    Article  Google Scholar 

  39. Kopp, A., Jia, X., Chakravarty, S.: Replacing energy by von Neumann entropy in quantum phase transitions. Ann. Phys. 322, 1466–1476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lorenz, C.D., Ziff, R.M.: Precise Determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices. Phys. Rev. E 57, 230–236 (1998)

    Article  Google Scholar 

  41. Schreiber, M., Grussbach, H.: Dimensionality dependence of the metal-insulator transition in the Anderson model of localization. Phys. Rev. Lett. 76, 1687–1690 (1996)

    Article  Google Scholar 

  42. Jahnke, L., Kantelhardt, J.W., Berkovits, R., Havlin, S.: Wave localization in complex networks with high clustering. Phys. Rev. Lett. 101, 175702 (2008)

    Article  Google Scholar 

  43. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks – From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  44. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  45. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002)

    Article  Google Scholar 

  46. Watts, D.J, Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  47. Serrano, M.A., Boguñá, M.: Percolation and epidemic thresholds in clustered networks. Phys. Rev. Lett. 97, 088701 (2006)

    Article  Google Scholar 

  48. Serrano, M.A., Boguñá, M.: Clustering in complex networks. I. General formalism. Phys. Rev. E 74, 056114 (2006)

    Article  MathSciNet  Google Scholar 

  49. Serrano, M.A., Boguñá, M.: Clustering in complex networks. II. Percolation properties. Phys. Rev. E 74, 056115 (2006)

    Article  MathSciNet  Google Scholar 

  50. Serrano, M.A., Boguñá, M.: Tuning clustering in random networks with arbitrary degree distributions. Phys. Rev. E 72, 036133 (2005)

    Article  Google Scholar 

  51. Volz, E.: Random networks with tunable degree distribution and clustering. Phys. Rev. E 70, 056115 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Berkovits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Berkovits, R., Jahnke, L., Kantelhardt, J.W. (2011). Wave Localization on Complex Networks. In: Dehmer, M., Emmert-Streib, F., Mehler, A. (eds) Towards an Information Theory of Complex Networks. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4904-3_4

Download citation

Publish with us

Policies and ethics