Advertisement

An Information-Theoretic Upper Bound on Planar Graphs Using Well-Orderly Maps

  • Nicolas Bonichon
  • Cyril Gavoille
  • Nicolas Hanusse
Chapter

Abstract

This chapter deals with compressed coding of graphs. We focus on planar graphs, a widely studied class of graphs. A planar graph is a graph that admits an embedding in the plane without edge crossings. Planar maps (class of embeddings of a planar graph) are easier to study than planar graphs, but as a planar graph may admit an exponential number of maps, they give little information on graphs. In order to give an information-theoretic upper bound on planar graphs, we introduce a definition of a quasi-canonical embedding for planar graphs: well-orderly maps. This appears to be an useful tool to study and encode planar graphs. We present upper bounds on the number of unlabeled1 planar graphs and on the number of edges in a random planar graph. We also present an algorithm to compute well-orderly maps and implying an efficient coding of planar graphs.

Keywords

Compact coding Enumerative combinatorics Planar embedding Planargraph 

References

  1. 1.
    Alonso, L., Rémy, J.L., Schott, R.: A linear-time algorithm for the generation of trees. Algorithmica 17(2), 162–182 (1997)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Banderier, C., Flajolet, P., Schaeffer, G., Soria, M.: Planar maps and airy phenomena. In: 27th International Colloquium on Automata, Languages and Programming (ICALP), vol. 1853 of Lecture Notes in Computer Science, pp. 388–402. Springer, New York (2000)Google Scholar
  3. 3.
    Barcucci, E., del Lungo, A., Pergola, E.: Random generation of trees and other combinatorial objects. Theor. Comput. Sci. 218(2), 219–232 (1999)MATHCrossRefGoogle Scholar
  4. 4.
    Bodirsky, M., Kang, M.: Generating random outerplanar graphs. In: 1st Workshop on Algorithms for Listing, Counting, and Enumeration (ALICE) (2003)Google Scholar
  5. 5.
    Bonichon, N.: A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths. In: Formal Power Series & Algebraic Combinatorics (FPSAC) (2002)Google Scholar
  6. 6.
    Bonichon, N., Gavoille, C., Hanusse, N.: An information-theoretic upper bound of planar graphs using triangulation. In: 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), vol. 2607 of Lecture Notes in Computer Science, pp. 499–510. Springer, New York (2003)Google Scholar
  7. 7.
    Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., Schaeffer, G.: Planar graphs, via well-orderly maps and trees. Graph. Combinator. 22, 1–18 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications to graph encoding and graph drawing. In: 12th Symposium on Discrete Algorithms (SODA), pp. 506–515. ACM-SIAM (2001)Google Scholar
  9. 9.
    Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using pq-trees. J. Comput. Syst. Sci. 30(1), 54–76 (1985)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using pq-trees. J. Comput. Syst. Sci. 30(1), 54–76 (1985)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chuang, R.C.N., Garg, A., He, X., Kao, M.Y., Lu, H.I.: Compact encodings of planar graphs via canonical orderings and multiple parentheses. In: Guldstrand Larsen, K., Skyum, S., Winskel, G. (eds.) 25th International Colloquium on Automata, Languages and Programming (ICALP), vol. 1443 of Lecture Notes in Computer Science, pp. 118–129. Springer, New York (1998)Google Scholar
  12. 12.
    Denise, A., Vasconcellos, M., Welsh, D.J.A.: The random planar graph. Congressus Numerantium 113, 61–79 (1996)MathSciNetMATHGoogle Scholar
  13. 13.
    Diestel, R.: Graph Theory, 2nd edn., vol. 173 of Graduate Texts in Mathematics. Springer, New York (2000)Google Scholar
  14. 14.
    Epstein, P., Sack, J.R.: Generating triangulations at random. ACM Trans. Model. Comput. Simul. 4, 267–278 (1994)MATHCrossRefGoogle Scholar
  15. 15.
    Frederickson, G.N., Janardan, R.: Efficient message routing in planar networks. SIAM J. Comput. 18(4), 843–857 (1989)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gavoille, C., Hanusse, N.: Compact routing tables for graphs of bounded genus. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) 26th International Colloquium on Automata, Languages and Programming (ICALP), vol. 1644 of Lecture Notes in Computer Science, pp. 351–360. Springer, New York (1999)Google Scholar
  17. 17.
    Gerke, S., McDiarmid, C.J.H.: On the number of edges in random planar graphs. Combinator. Probab. Comput. 13, 165–183 (2004)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Giménez, O., Noy, M.: Asymptotic enumeration and limit laws of planar graphs. J. Am. Math. Soc. 22, 309–329 (2009)MATHCrossRefGoogle Scholar
  19. 19.
    He, X., Kao, M.Y., Lu, H.I.: A fast general methodology for information-theoretically optimal encodings of graphs. SIAM J. Comput. 30(3), 838–846 (2000)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Keeler, K., Westbrook, J.: Short encodings of planar graphs and maps. Discrete Appl. Math. 58, 239–252 (1995)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Khodakovsky, A., Alliez, P., Desbrun, M., Schröder, P.: Near-optimal connectivity encoding of 2-manifold polygon meshes. Graph. Model. (2002). To appear in a special issueGoogle Scholar
  22. 22.
    King, D., Rossignac, J.: Guaranteed 3.67V bit encoding of planar triangle graphs. In: 11th Canadian Conference on Computational Geometry (CCCG), pp. 146–149 (1999)Google Scholar
  23. 23.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Liskovets, V.A., Walsh, T.R.: Ten steps to counting planar graphs. Congressus Numerantium 60, 269–277 (1987)MathSciNetGoogle Scholar
  25. 25.
    Liu, Y.: Enumeration of simple planar maps. Utilitas Math. 34, 97–104 (1988)MathSciNetMATHGoogle Scholar
  26. 26.
    Lu, H.I.: Improved compact routing tables for planar networks via orderly spanning trees. In: 8th Annual International Computing & Combinatorics Conference (COCOON), vol. 2387 of Lecture Notes in Computer Science, pp. 57–66. Springer, New York (2002)Google Scholar
  27. 27.
    Lu, H.I.: Linear-time compression of bounded-genus graphs into information-theoretically optimal number of bits. In: 13th Symposium on Discrete Algorithms (SODA), pp. 223–224. ACM-SIAM (2002)Google Scholar
  28. 28.
    McDiarmid, C.J.H., Steger, A., Welsh, D.J.A.: Random planar graphs. J. Combin. Theor. B 93, 187–205 (2005)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static trees and planar graphs. In: 38th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 118–126. IEEE Computer Society Press (1997)Google Scholar
  30. 30.
    Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. North-Holland Mathematics Studies 140, Amsterdam (1988)Google Scholar
  31. 31.
    Osthus, D., Prömel, H.J., Taraz, A.: On random planar graphs, the number of planar graphs and their triangulations. J. Combin. Theor. B 88, 119–134 (2003)MATHCrossRefGoogle Scholar
  32. 32.
    Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM J. Comput. 31(2), 353–363 (2001)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. In: 30th International Colloquium on Automata, Languages and Programming (ICALP), vol. 2719 of Lecture Notes in Computer Science, pp. 1080–1094. Springer, New York (2003)Google Scholar
  34. 34.
    Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE Trans. Visual. Comput. Graph. 5(1), 47–61 (1999)CrossRefGoogle Scholar
  35. 35.
    Schaeffer, G.: Random sampling of large planar maps and convex polyhedra. In: 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 760–769 (1999)Google Scholar
  36. 36.
    Schnyder, W.: Embedding planar graphs on the grid. In: 1st Symposium on Discrete Algorithms (SODA), pp. 138–148. ACM-SIAM (1990)Google Scholar
  37. 37.
    Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. In: 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 242–251. IEEE Computer Society Press (2001)Google Scholar
  38. 38.
    Turán, G.: Succinct representations of graphs. Discrete Appl. Math. 8, 289–294 (1984)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Tutte, W.T.: A census of planar triangulations. Cana. J. Math. 14, 21–38 (1962)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38, 36–67 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nicolas Bonichon
    • 1
  • Cyril Gavoille
    • 1
  • Nicolas Hanusse
    • 2
  1. 1.LaBRIUniversity of BordeauxBordeauxFrance
  2. 2.LaBRICNRS – University of BordeauxBordeauxFrance

Personalised recommendations