Skip to main content

Propagation of Waves in Networks of Thin Fibers

  • Chapter
  • First Online:

Abstract

This chapter contains a simplified and improved version of the results obtained by the authors earlier.Wave propagation is discussed in a network of branched thin wave guides when the thickness vanishes and the wave guides shrink to a one-dimensional graph. It is shown that asymptotically one can describe the propagating waves, the spectrum and the resolvent in terms of solutions of ordinary differential equations (ODEs) on the limiting graph. The vertices of the graph correspond to junctions of the wave guides. In order to determine the solutions of the ODEs on the graph uniquely, one needs to know the gluing conditions (GC) on the vertices of the graph.

Unlike other publications on this topic, we consider the situation when the spectral parameter is greater than the threshold, i.e., the propagation of waves is possible in cylindrical parts of the network. We show that the GC in this case can be expressed in terms of the scattering matrices related to individual junctions. The results are extended to the values of the spectral parameter below the threshold and around it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birman, M.S.: Perturbations of the continuous spectrum of a singular elliptic operator by varying the boundary and the boundary conditions. Vestnik Leningrad. Univ., 17, 22-55 (1962) (Russian).

    MathSciNet  Google Scholar 

  2. Dell’Antonio, G., Tenuta, L.: Quantum graphs as holonomic constraints. J. Math. Phys., 47, article 072102 (2006).

    Article  MathSciNet  Google Scholar 

  3. Duclos, P., Exner, P., Stovicek, P.: Curvature-induced resonances in a two-dimensional Dirichlet tube. Ann. Inst. H. Poincaré, 62, 81-101 (1995).

    MATH  MathSciNet  Google Scholar 

  4. Exner, P., Post, O.: Convergence of spectra of graph-like thin manifolds. J. Geom. Phys., 54, 77-115 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  5. Exner, P., Šeba, P.: Electrons in semiconductor microstructures: a challenge to operator theorists, in Schrödinger Operators, Standard and Nonstandard, World Scientific, Singapore (1989), 79-100.

    Google Scholar 

  6. Exner, P., Šba, P.: Bound states in curved quantum waveguides. J. Math. Phys., 30, 2574-2580 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  7. Exner, P., Šeba, P.: Trapping modes in a curved electromagnetic waveguide with perfectly conducting walls. Phys. Lett. A, 144, 347-350 (1990).

    Article  MathSciNet  Google Scholar 

  8. Exner, P., Vugalter, S.A.: Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window. Ann. Inst. H. Poincaré Phys. Theor., 65, 109-123 (1996).

    MATH  MathSciNet  Google Scholar 

  9. Exner, P., Vugalter, S.A.: On the number of particles that a curved quantum waveguide can bind. J. Math. Phys., 40, 4630-4638 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  10. Exner, P., Weidl, T.: Lieb-Thirring inequalities on trapped modes in quantum wires, in Proceedings of the XIII International Congress on Mathematical Physics, International Press, Boston (2001), 437-443.

    Google Scholar 

  11. Freidlin, M., Wentzel, A.: Diffusion processes on graphs and averaging principle. Ann. Probab., 21, 2215-2245 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  12. Freidlin, M.: Markov Processes and Differential Equations: Asymptotic Problems, Birkhäuser, Basel (1996).

    Google Scholar 

  13. Grieser, D.: Spectra of graph neighborhoods and scattering. Proc. London Math. Soc., 97, 718-752 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  14. Kostrykin, V., Schrader, R.: Kirchhoff’s rule for quantum waves. J. Phys. A, 32, 595-630 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  15. Kuchment, P.: Graph models of wave propagation in thin structures. Waves in Random Media, 12, 1-24 (2002).

    Article  MathSciNet  Google Scholar 

  16. Kuchment, P.: Quantum graphs. I. Some basic structures. Waves in Random Media, 14, 107-128 (2004).

    Article  MathSciNet  Google Scholar 

  17. Kuchment, P.: Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A, 38, 4887-4900 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuchment, P., Zeng, H.: Convergence of spectra of mesoscopic systems collapsing onto a graph. J. Math. Anal. Appl., 258, 671-700 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuchment, P., Zeng, H.: Asymptotics of spectra of Neumann Laplacians in thin domains, in Advances in Differential Equations and Mathematical Physics, Karpeshina, Yu. et al. (eds.), American Mathematical Society, Providence, RI (2003), 199-213.

    Google Scholar 

  20. Molchanov, S., Vainberg, B.: Transition from a network of thin fibers to quantum graph: an explicitly solvable model, in Contemporary Mathematics, American Mathematical Society, Providence, RI (2006), 227-240.

    Google Scholar 

  21. Molchanov, S., Vainberg, B.: Scattering solutions in networks of thin fibers: small diameter asymptotics. Comm. Math. Phys., 273, 533-559 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  22. Molchanov, S., Vainberg, B.: Laplace operator in networks of thin fibers: spectrum near the threshold, in Stochastic Analysis in Mathematical Physics, World Scientific, Hackensack, NJ (2008), 69-93.

    Google Scholar 

  23. Mikhailova, A., Pavlov, B., Popov, I., Rudakova, T., Yafyasov, A.: Scattering on a compact domain with few semi-infinite wires attached: resonance case. Math. Nachr., 235, 101-128 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  24. Pavlov, B., Robert, K.: Resonance optical switch: calculation of resonance eigenvalues, in Waves in Periodic and Random Media, American Mathematical Society, Providence, RI (2003), 141-169.

    Google Scholar 

  25. Post, O.: Branched quantum wave guides with Dirichlet BC: the de-coupling case. J. Phys. A, 38, 4917-4932 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  26. Post, O.: Spectral convergence of non-compact quasi-one-dimensional spaces. Ann. Henri Poincaré, 7, 933-973 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  27. Rubinstein, J., Schatzman, M.: Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum. Arch. Rational Mech. Anal., 160, 293-306 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Molchanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Molchanov, S., Vainberg, B. (2010). Propagation of Waves in Networks of Thin Fibers. In: Constanda, C., Pérez, M. (eds) Integral Methods in Science and Engineering, Volume 1. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4899-2_25

Download citation

Publish with us

Policies and ethics