Skip to main content

Boundary Element Collocation Method for Time-Fractional Diffusion Equations

  • Chapter
  • First Online:
Integral Methods in Science and Engineering, Volume 2
  • 1331 Accesses

Abstract

In this chapter, we discuss the numerical solution of the space-time boundary integral equation

$$S_{\Gamma u \Gamma} (x, t) = \int^t_0 \int_\Gamma u_\Gamma (y, \tau)E(x - y, t - \tau){\rm d}s_y {\rm d}\tau = f(x, t),\ \ x \in \Gamma, \quad 0 < t < T,$$

where Γ is a smooth plane curve. The kernel of the integral operator,

$$E(x,t) = \frac{1} {\pi }t^{\alpha - 1} |x|^{ - 2} H_{12}^{20} \left( {\frac{1} {4}|x|^2 t^{ - \alpha } |\begin{array}{*{20}l} {(\alpha ,\alpha )} \\ {(1,1),(1,1)} \\ \end{array} } \right),\,\,\,\,\,\,0 < \alpha \leq 1,$$

is the fundamental solution of the time-fractional diffusion equation (see [KiSa04] and [PBM90]). We consider the problem

$$\begin{array}{c}\partial^\alpha_t \Phi - \Delta\Phi = 0, \ \ {\rm in} \ Q_T = \Omega \times (0, T),\\ B\Phi = g, {\rm on} \sum_T = \Gamma \times (0, T),\\ \Phi(x, 0) = 0, \ x \in \Omega,\end{array}$$

where the boundary operator B(Φ) = Φ|ΣT and ∂α t is the Caputo time derivative of the fractional order 0 < α ≤ 1.

We shall consider the spline collocation method for the numerical approxproductimation of the solution on quasi-uniform meshes with piecewise linear tensor splines as the approximation space. We will show that the spline collocation method is stable in a suitable anisotropic Sobolev space, and it furnishes quasi-optimal error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Aziz, A.K., ed., Academic Press (1972).

    Google Scholar 

  2. Costabel, M.: Boundary integral operators for the heat equation. Integral Equations Oper. Theory, 13, 498–552 (1992).

    Article  MathSciNet  Google Scholar 

  3. Costabel, M., Saranen, J.: Spline collocation for convolutional parabolic boundary integral equations. Numer. Math., 84, 417–449 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  4. Costabel, M., Saranen, J.: Parabolic boundary integral operators, symbolic representations and basic properties. Integral Equations Oper. Theory, 40, 185–211 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  5. Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equation. J. Differential Equations, 199, 211–255 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  6. Elschner, J., Schmidt, G.: On spline interpolation in periodic Sobolev spaces. Preprint 01/83, Dept. Math. Akademie der Wissenschaften der DDR, Berlin (1985).

    Google Scholar 

  7. Hamina, M., Saranen, J.: On the spline collocation method for the single-layer heat operator equation. Math. Comp., 62, 41–64 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  8. Hsiao, G.C., Saranen, J.: Coercivity of the single-layer heat operator. Report 89–2, Center for Mathematics and Waves, University of Delaware (1989).

    Google Scholar 

  9. Hsiao, G.C., Saranen, J.: Boundary integral solution of the two-dimensional heat equation. Math. Methods Appl. Sci., 16, 87–114 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  10. Hämäläinen J.: Spline collocation for the single-layer heat equation. Ann. Acad. Sci. Fenn., Mathematica Dissertationes 113 (1998).

    Google Scholar 

  11. Kemppainen, J., Ruotsalainen, K.: Boundary integral solution of the time-fractional diffusion equation. This volume, 213–222.

    Google Scholar 

  12. Kemppainen, J., Ruotsalainen, K.: Numerical approximation of the boundary integral equations for two-dimensional fractional diffusion equations (in preparation).

    Google Scholar 

  13. Kilbas, A.A., Saigo, M.: H-transforms: Theory and Applications, CRC Press, Boca Raton, FL (2004).

    MATH  Google Scholar 

  14. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer, Berlin (1972).

    MATH  Google Scholar 

  15. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Vol. II, Springer, Berlin (1972).

    MATH  Google Scholar 

  16. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Vol. 3. More Special Functions, Overseas Publishers Association, Amsterdam (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kemppainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Kemppainen, J., Ruotsalainen, K. (2010). Boundary Element Collocation Method for Time-Fractional Diffusion Equations. In: Constanda, C., Pérez, M. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4897-8_21

Download citation

Publish with us

Policies and ethics