Abstract
The paper is an introduction to the Stein–Sahi complementary series and to unipotent representations. We also discuss some open problems related to these objects. For the sake of simplicity, we consider only the groups U(n, n).
Keywords
- Unitary representations
- Complementary series
- Symmetric spaces
- Non-commutative harmonic analysis
- Classical groups
- Unitary group
- Highest weight representations
- Unipotent representations
Mathematics Subject Classification (2010):42B35, 22D10
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
van den Ban, E.P., Schlichtkrull, H., The most continuous part of the Plancherel decomposition for a reductive symmetric space.Ann. Math., 145 (1997), 267–364
Bargmann, V. Irreducible unitary representations of the Lorentz group.Ann. Math, 48 (1947), 568–640
Berezin, F.A., Quantization in complex symmetric spaces.Izv. Akad. Nauk SSSR, Ser. Math., 39, 2, 1362–1402 (1975); English translation: Math USSR Izv. 9 (1976), No 2, 341–379(1976)
Berezin, F. A. The connection between covariant and contravariant symbols of operators on classical complex symmetric spaces.Sov. Math. Dokl. 19 (1978), 786–789
Branson, Th., Olafsson, G., Orsted, B. Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup,J. Funct. Anal., 135, 163–205.
Delorme, P. Formule de Plancherel pour les espaces symmétrique reductifs.Ann. Math., 147 (1998), 417–452
van Dijk, G., Molchanov, V.F. The Berezin form for rank one para-Hermitian symmetric spaces.J. Math. Pure. Appl., 78 (1999), 99–119.
Dvorsky, A., Sahi, S. Explicit Hilbert spaces for certain unipotent representations. II.Invent. Math. 138 (1999), no. 1, 203–224.
Dvorsky, A., Sahi, S. Explicit Hilbert spaces for certain unipotent representations. III.J. Funct. Anal. 201(2003), no. 2, 430–456.
Faraut, J., Koranyi, A., Analysis in symmetric cones.Oxford Univ.Press, (1994)
Flensted-Jensen, M. Discrete series for semisimple symmetric spaces.Ann. of Math. (2) 111 (1980), no. 2, 253–311.
Friedrichs, K. O. Mathematical aspects of the quantum theory of fields.Interscience Publishers, Inc., New York, 1953.
Gelfand, I. M., Gindikin, S. G. Complex manifolds whose skeletons are semisimple Lie groups and analytic discrete series of representations.Funct. Anal. Appl., 11 (1978), 258–265
Gelfand, I.M., Naimark, M.I., Unitary representations of classical groups.Unitary representations of classical groups.Trudy MIAN., t.36 (1950); German translation: Gelfand I.N., Neumark M.A., Unitare Darstellungen der klassischen gruppen., Akademie-Verlag, Berlin, 1957.
Gradshtein, I.S., Ryzhik, I.M. Tables of integrals, sums and products.Fizmatgiz, 1963; English translation: Acad. Press, NY, 1965
Groenevelt, W., Koelink, E., Rosengren, H. Continuous Hahn polynomials and Clebsch–Gordan coefficients.Theory and applications of special functions, 221–284, Dev. Math., 13, Springer, New York, 2005.
Harish-Chandra, Representations of semisimple Lie groups IV,Amer. J. Math., 743–777 (1955). Reprinted in Harish-Chandra Collected papers,v.2.
Higher transcendental functions, v.1., McGraw-Hill book company, 1953
Jakobsen, H.P., Vergne, M., Restrictions and expansions of holomorphic representations.J. Funct. Anal., 34 (1979), 29–53.
Kadell, K. The Selberg–Jack symmetric functions.Adv. Math., 130 (1997), 33-102
Kirillov, A.A. Elements of representation theory,Moscow, Nauka, 1972; English transl.: Springer, 1976.
Krattenthaler, C. Advanced determinant calculus.The Andrews Festschrift (Maratea, 1998). Sem. Lothar. Combin. 42 (1999), Art. B42q, 67 pp. (electronic).
Molchanov, V. F.Tensor products of unitary representations of the three-dimensional Lorentz group.Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 4, 860–891, 967. English transl. in Izvestia.
Molchanov, V. F. Quantization on the imaginary Lobachevsky plane.Funct. Anal. Appl., 14 (1980), 162–144
Neretin, Yu. A. The restriction of functions holomorphic in a domain to a curve lying in the boundary, and discrete \({\mathrm{SL}}_{2}(\mathbb{R})\) -spectra.Izvestia: Mathematics, 62:3(1998), 493–513
Neretin, Yu.A., Matrix analogs of B-function and Plancherel formula for Berezin kernel representations, Mat. Sbornik, 191, No.5 (2000), 67–100;
Neretin, Yu.A., Plancherel formula for Berezin deformation of L 2 on Riemannian symmetric space, J. Funct. Anal. (2002), 189(2002), 336–408.
Neretin, Yu.A. Matrix balls, radial analysis of Berezin kernels, and hypergeometric determinants,Moscow Math. J., v.1 (2001), 157–221.
Neretin, Yu.A. Notes Sahi–Stein representations and some problems of non-L 2 harmonic analysis., J. Math. Sci., New York, 141 (2007), 1452–1478
Neretin, Yu. A. Notes on matrix analogs of Sobolev spaces and Stein–Sahi representations.Preprint, http://arxiv.org/abs/math/0411419
Neretin, Yu. A. Lectures on Gaussian integral operators and classical groups,to appear.
Neretin, Yu. A. Some continuous analogs of expansion in Jacobi polynomials and vector-valued orthogonal bases.Funct. Anal. Appl., 39 (2005), 31–46.
Neretin, Yu.A., Olshanskii, G.I., Boundary values of holomorphic functions,singular unitary representations of groups O(p,q) and their limits as q →∞.Zapiski nauchn. semin. POMI RAN 223, 9–91(1995); English translation: J.Math.Sci., New York, 87, 6 (1997), 3983–4035.
Olshanskij, G.I., Complex Lie semigroups, Hardy spaces, and Gelfand–Gindikin program.Deff. Geom. Appl., 1 (1991), 235–246
Oshima, T. A calculation of c-functions for semisimple symmetric spaces. Lie groups and symmetric spaces,307–330, Amer. Math. Soc. Transl. Ser. 2, 210, Amer. Math. Soc., Providence, RI, 2003.
Pukanszky, L., On the Kronecker products of irreducible unitary representations of the 2 × 2 real unimodular group.Trans. Amer. Math. Soc., 100 (1961), 116–152
Pukanzsky, L. Plancherel formula for universal covering group of \(\mathrm{SL}(2, \mathbb{R})\) .Math. Ann., 156 (1964), 96–143
Ricci, F., Stein, E. M. Homogeneous distributions on spaces of Hermitean matrices.J. Reine Angew. Math. 368 (1986), 142–164.
Rosengren, H. Multilinear Hankel forms of higher order and orthogonal polynomials.Math. Scand., 82 (1998), 53-88
Sahi, S. A simple construction of Stein’s complementary series representations.Proc. Amer. Math. Soc. 108 (1990), no. 1, 257–266.
Sahi, S., Unitary representations on the Shilov boundary of a symmetric tube domain,Contemp. Math. 145 (1993) 275–286.
Sahi, S. Jordan algebras and degenerate principal series, J. Reine Angew.Math. 462 (1995) 1–18.
Sahi, S. Explicit Hilbert spaces for certain unipotent representations.Invent. Math. 110 (1992), no. 2, 409–418.
Sahi, S., Stein, E. M. Analysis in matrix space and Speh’s representations.Invent. Math. 101 (1990), no. 2, 379–393.
Sally, P. J., Analytic continuations of irreducible unitary representations of the universal covering group of \(\mathrm{SL}(2, \mathbb{R})\) .Amer. Math. Soc., Providence, 1967
Stein, E. M. Analysis in matrix spaces and some new representations ofSL (N, C).Ann. of Math. (2) 86 1967 461–490.
Unterberger, A., Upmeier, H., The Berezin transform and invariant differential operators. Comm.Math.Phys.,164, 563–597(1994)
Vogan, D. A., The unitary dual ofGL (n) over an Archimedean field.Invent. Math. 83 (1986), no. 3, 449–505.
Weyl, H. The Classical Groups. Their Invariants and Representations.Princeton University Press, Princeton, N.J., 1939.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Neretin, Y.A. (2012). Stein–Sahi Complementary Series and Their Degenerations. In: Krötz, B., Offen, O., Sayag, E. (eds) Representation Theory, Complex Analysis, and Integral Geometry. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4817-6_7
Download citation
DOI: https://doi.org/10.1007/978-0-8176-4817-6_7
Published:
Publisher Name: Birkhäuser Boston
Print ISBN: 978-0-8176-4816-9
Online ISBN: 978-0-8176-4817-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)