Skip to main content

Generalized Linear Models and Extensions

  • Chapter
  • First Online:
Contingency Table Analysis

Part of the book series: Statistics for Industry and Technology ((SIT))

  • 4170 Accesses

Abstract

The generalized linear model (GLM) is reviewed and the log-linear models are integrated in this family. For GLMs, maximum likelihood estimation, model fit, and model selection are discussed. In the GLM framework the analysis of incomplete tables is more straightforward. The quasi-independence model is defined and illustrated in R. Furthermore, the family of generalized log-linear models (GLLMs) is briefly presented and a GLLM is illustrated with a representative example in R.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti, A:. An Introduction to Categorical Data Analysis, 2nd edn. Wiley, New York (2007)

    Book  MATH  Google Scholar 

  • Agresti, A.: Categorical Data Analysis, 3rd edn. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  • Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  • Altham, P.M.E.: Quasi-independent triangular contingency tables. Biometrics 31, 233–238 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Bartolucci, F., Colombi, R., Forcina, A.: An extended class of marginal link functions for modelling contingency tables by equality and inequality constraints. Statistica Sinica 17, 691–711 (2007)

    MATH  MathSciNet  Google Scholar 

  • Becker, M.P., Minick, S., Yang, I.: Specifications of models for cross-classified counts: comparisons of the log-linear models and marginal models perspectives. Socio. Meth. Res. 26, 511–529 (1998)

    Article  Google Scholar 

  • Bergsma, W.P., Rudas, T.: Marginal models for categorical data. Ann. Stat. 30, 140–159 (2002a)

    Article  MATH  MathSciNet  Google Scholar 

  • Bergsma, W.P., Rudas, T.: Modeling conditional and marginal association in contingency tables. Ann. Fac. Sci. Toulouse Math. 11, 443–454 (2002b)

    Article  MathSciNet  Google Scholar 

  • Bergsma, W.P., Croon, M., Hagenaars, J.A.: Marginal Models: For Dependent, Clustered, and Longitudinal Categorical Data. Springer, New York (2009)

    Google Scholar 

  • Bishop, Y.M.M., Fienberg, S.E.: Incomplete two-dimensional contingency tables. Biometrics 25, 119–128 (1969)

    Article  Google Scholar 

  • Bishop, Y.M.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge (1975)

    MATH  Google Scholar 

  • Brunswick, A.F.: Adolescent health, sex, and fertility. Am. J. Publ. Health 61, 711–720 (1971)

    Article  Google Scholar 

  • Burnham, K.P., Anderson, D.R.: Multimodel inference: understanding AIC and BIC in model selection. Socio. Meth. Res. 33, 261–304 (2004)

    Article  MathSciNet  Google Scholar 

  • Colombi, R., Giordano, S., Cazzaro, M., Lang, J.B.: Package hmmm. R package version 1.0-1 (2013)

    Google Scholar 

  • Colombo, A.G., Ihm, P.: A quasi-independence model to estimate failure rates. Reliab. Eng. Syst. Saf. 21, 309–318 (1988)

    Article  Google Scholar 

  • Dobson, A.J., Barnett, A.: An Introduction to Generalized Linear Models, 3rd edn. Chapman and Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  • Efron, B., Hinkley, D.V.: Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information (with discussion). Biometrika 65, 457–487 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Enke, H.: On the analysis of incomplete two-dimensional contingency tables. Biometrical J. 19, 561–573 (1977)

    Article  MathSciNet  Google Scholar 

  • Fahrmeir, F., Tutz, G.: Multivariate Statistical Modelling Based on Generalized Linear Models, 2nd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  • Farrington, C.P.: On assessing goodness of fit of generalized linear models to sparse data. J. Roy. Stat. Soc. Ser. B 58, 349–360 (1996)

    MATH  MathSciNet  Google Scholar 

  • Fienberg, S.E.: Preliminary graphical analysis and quasi-independence for two-way contingency tables. J. Roy. Stat. Soc. Ser. C 18, 153–168 (1969)

    MathSciNet  Google Scholar 

  • Fienberg, S.E.: Quasi-independence and maximum likelihood estimation in incomplete contingency tables. J. Am. Stat. Assoc. 65, 1610–1616 (1970a)

    Article  MATH  MathSciNet  Google Scholar 

  • Fienberg, S.E.: The Analysis of Cross-Classified Categorical Data. Springer, New York (reprint of the 1980 edition by MIT Press) (2007)

    Google Scholar 

  • Goodman, L.A.: Statistical methods for the preliminary analysis of transaction flows. Econometrica 31, 197–208 (1963a)

    Article  Google Scholar 

  • Goodman, L.A.: On the statistical analysis of mobility tables. Am. J. Socio. 70, 564–585 (1965)

    Article  Google Scholar 

  • Goodman, L.A.: The analysis of cross-classified data: independence, quasi independence, and interactions in contingency tables with or without missing entries. J. Am. Stat. Assoc. 63, 1091–1131 (1968)

    MATH  Google Scholar 

  • Goodman, L.A.: A simple simultaneous test procedure for quasi-independence in contingency tables. Appl. Stat. 20, 165–177 (1971a)

    Article  Google Scholar 

  • Goodman, L.A.: On quasi-independence in triangular contingency tables. Biometrics 35, 651–655 (1979a)

    Article  MATH  Google Scholar 

  • Goodman, L.A.: On quasi-independence and quasi-dependence in contingency tables, with special inference to ordinal triangular contingency tables. J. Am. Stat. Assoc. 89, 1059–1063 (1994)

    Article  MATH  Google Scholar 

  • Grizzle, J.E., Williams, O.D.: Loglinear models and tests of independence for contingency tables. Biometrics 28, 137–156 (1972)

    Article  Google Scholar 

  • Haber, M.: Maximum likelihood methods for linear and log-linear models in categorical data. Comput. Stat. Data Anal. 3, 1–10 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Haber, M., Brown, M.: Maximum likelihood methods for log-linear models when expected frequencies are subject to linear constraints. J. Am. Stat. Assoc. 81, 477–482 (1986)

    MATH  MathSciNet  Google Scholar 

  • Haberman, S.J.: Log-linear models for frequency data: sufficient statistics and likelihood equations. Ann. Stat. 1, 617–632 (1973a)

    Article  MATH  Google Scholar 

  • Harris, J.A., Treloar A.E.: On a limitation in the applicability of the contingency coefficient. Am. Stat. 22, 460–472 (1927)

    Article  Google Scholar 

  • Harris, J.A., Tu, C.: A second category of limitations in the applicability of the contingency coefficient. Am. Stat. 242, 367–375 (1929)

    Article  Google Scholar 

  • Hastie, T.J., Pregibon, D.: Generalized linear models, chapter 6. In: Chambers, J.M., Hastie, T.J. (eds.) Statistical Models in S. Wadsworth & Brooks/Cole, Pacific Grove (1992)

    Google Scholar 

  • Klimova, A., Rudas, T., Dobra, A.: Relational models for contingency tables. J. Multivariate Anal. 104, 159–173 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Lang, J.B.: Maximum likelihood methods for a generalized class of loglinear models. Ann. Stat. 24, 726–752 (1996a)

    Article  MATH  Google Scholar 

  • Lang, J.B.: Multinomial-Poisson homogeneous models for contingency tables. Ann. Stat. 32, 340–383 (2004)

    Article  MATH  Google Scholar 

  • Lang, J.B.: Homogeneous linear predictor models for contingency tables. J. Am. Stat. Assoc. 100, 121–134 (2005)

    Article  MATH  Google Scholar 

  • Lang, J.B., Agresti, A.: Simultaneously modelling the joint and marginal distributions of multivariate categorical responses. J. Am. Stat. Assoc. 89, 625–632 (1994)

    Article  MATH  Google Scholar 

  • Lang, J.B., McDonald, J.W., Smith, P.W.F.: Association-marginal modeling of multivariate categorical responses: a maximum likelihood approach. J. Am. Stat. Assoc. 94, 1161–1171 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Mantel, N.: Incomplete contingency tables. Biometrics 26, 291–304 (1970)

    Article  MathSciNet  Google Scholar 

  • McCullagh, P.: Regression models for ordinal data (with discussion). J. Roy. Stat. Soc. B 42, 109–142 (1980)

    MATH  MathSciNet  Google Scholar 

  • McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall, London (1989)

    Book  MATH  Google Scholar 

  • Morgan, B.J.T., Titterington, D.M.: A comparison of iterative methods for obtaining maximum likelihood estimates in contingency tables with a missing diagonal. Biometrika 64, 265–269 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. J. Roy. Stat. Soc. A 135, 370–384 (1972)

    Article  Google Scholar 

  • Palmgren, J.: The Fisher information matrix for log-linear models arguing conditionally on observed explanatory variables. Biometrika 68, 563–566 (1981)

    MATH  MathSciNet  Google Scholar 

  • Pierce, D.A., Schafer, D.W.: Residuals in generalized linear models. J. Am. Stat. Assoc. 81, 977–986 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Poleto, F.Z., Paulino, C.D., Molenberghs, G., Singer, J.M.: Inferential implications of over-parametrization: a case study in incomplete categorical data. Int. Stat. Rev. 79, 92–113 (2011)

    Article  Google Scholar 

  • Rudas, T., Bergsma, W., Nemeth, R.: Marginal log-linear parameterization of conditional independence models. Biometrika 97, 1006–1012; Faulbaum, F. (ed.) Softstat ’93: Advances in Statistical Software, pp. 293–299. Gustav Fischer, New York (2010)

    Google Scholar 

  • Sarkar, S.K.: Quasi-independence in ordinal triangular contingency tables. J. Am. Stat. Assoc. 84, 592–597 (1989)

    Article  Google Scholar 

  • Savage, I.R., Deutsch, K.A.: A statistical model of the gross analysis of transaction flows. Econometrica 28, 551–572 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MATH  Google Scholar 

  • Spall, J.C.: Monte Carlo computation of the Fisher information matrix in nonstandard settings. J. Comput. Graph. Stat. 14, 889–909 (2005)

    Article  MathSciNet  Google Scholar 

  • Stigler, S.M.: Studies in the history of probability and statistics XLIII. Karl Pearson and quasi-independence. Biometrika 79, 563–575 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Tsai, M.T., Sen, P.K.: A test of quasi-independence in ordinal triangular contingency tables. Statistica Sinica 5, 767–780 (1995)

    MATH  MathSciNet  Google Scholar 

  • Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  • Waite, H.: Association of finger-prints. Biometrika 10, 421–478 (1915)

    Article  Google Scholar 

  • White, H.C.: Cause and effect in social mobility tables. Behav. Sci. 7, 14–27 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kateri, M. (2014). Generalized Linear Models and Extensions. In: Contingency Table Analysis. Statistics for Industry and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-4811-4_5

Download citation

Publish with us

Policies and ethics