Skip to main content

Point Prediction from Progressively Type-II Censored Samples

  • Chapter
  • First Online:
Book cover The Art of Progressive Censoring

Part of the book series: Statistics for Industry and Technology ((SIT))

  • 1660 Accesses

Abstract

Several prediction problems for progressively Type-II censored data are considered. This includes prediction of progressively censored lifetime as well as prediction of future observations. After introducing several concepts of point prediction, applications to exponential, extreme value, normal, and Pareto distributions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Aty Y, Franz J, Mahmoud MAW (2007) Bayesian prediction based on generalized order statistics using multiply type-II censoring. Statistics 41:495–504

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahmadi J, MirMostafaee SM, Balakrishnan N (2012) Bayesian prediction of k-record values based on progressively censored data from exponential distribution. J Stat Comput Simul 82:51–62

    Article  MATH  MathSciNet  Google Scholar 

  3. AL-Hussaini EK, Ahmad AEBA (2003) On Bayesian predictive distributions of generalized order statistics. Metrika 57:165–176

    Google Scholar 

  4. Alam K (1972) Unimodality of the distribution of an order statistic. Ann Math Stat 43: 2041–2044

    Article  MATH  MathSciNet  Google Scholar 

  5. Ali Mousa MAM (2001) Inference and prediction for Pareto progressively censored data. J Stat Comput Simul 71:163–181

    Article  MATH  MathSciNet  Google Scholar 

  6. Ali Mousa MAM, Al-Sagheer S (2005) Bayesian prediction for progressively type-II censored data from the Rayleigh model. Comm Stat Theory Meth 34:2353–2361

    Article  MATH  MathSciNet  Google Scholar 

  7. Ali Mousa MAM, Jaheen ZF (2002a) Bayesian prediction for progressively censored data from the Burr model. Stat Papers 43:587–593

    Article  MATH  MathSciNet  Google Scholar 

  8. Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods, and applications. Birkhäuser, Boston

    Book  Google Scholar 

  9. Balakrishnan N, Rao CR (1997) Large-sample approximations to the best linear unbiased estimation and best linear unbiased prediction based on progressively censored samples and some applications. In: Panchapakesan S, Balakrishnan N (eds) Advances in statistical decision theory and applications. Birkhäuser, Boston, pp 431–444

    Chapter  Google Scholar 

  10. Balakrishnan N, Burkschat M, Cramer E (2008a) Best linear equivariant estimation and prediction in location-scale families. Sankhyā Ser B 70:229–247

    MATH  MathSciNet  Google Scholar 

  11. Barlow RE, Proschan F (1966) Inequalities for linear combinations of order statistics from restricted families. Ann Math Stat 37:1574–1592

    Article  MATH  MathSciNet  Google Scholar 

  12. Basak I, Balakrishnan N (2009) Predictors of failure times of censored units in progressively censored samples from normal distribution. Sankhyā 71-B:222–247

    MathSciNet  Google Scholar 

  13. Basak I, Basak P, Balakrishnan N (2006) On some predictors of times to failure of censored items in progressively censored samples. Comput Stat Data Anal 50:1313–1337

    Article  MathSciNet  Google Scholar 

  14. Burkschat M (2010) Linear estimators and predictors based on generalized order statistics from generalized Pareto distributions. Comm Stat Theory Meth 39:311–326

    Article  MATH  MathSciNet  Google Scholar 

  15. Christensen R (2011) Plane answers to complex questions: the theory of linear models, 4th edn. Springer, New York

    Book  Google Scholar 

  16. Cohen AC (1951) Estimating parameters of logarithmic-normal distributions by maximum likelihood. J Am Stat Assoc 46:206–212

    Article  MATH  Google Scholar 

  17. Cohen AC, Whitten BJ (1988) Parameter estimation in reliability and life span models. Marcel Dekker, New York

    MATH  Google Scholar 

  18. Cramer E (2004) Logconcavity and unimodality of progressively censored order statistics. Stat Probab Lett 68:83–90

    Article  MATH  MathSciNet  Google Scholar 

  19. Cramer E, Kamps U (2001a) Estimation with sequential order statistics from exponential distributions. Ann Inst Stat Math 53:307–324

    Article  MATH  MathSciNet  Google Scholar 

  20. Dharmadhikari S, Joag-dev K (1988) Unimodality, convexity, and applications. Academic, Boston

    MATH  Google Scholar 

  21. Doganaksoy N, Balakrishnan N (1997) A useful property of best linear unbiased predictors with applications to life-testing. Am Stat 51:22–28

    MathSciNet  Google Scholar 

  22. Fernández AJ (2004b) One- and two-sample prediction based on doubly censored exponential data and prior information. TEST 13:403–416

    Article  MATH  MathSciNet  Google Scholar 

  23. Fernández AJ (2009) Bayesian estimation and prediction based on Rayleigh sample quantiles. Qual Quant 44:1–10

    Google Scholar 

  24. Goldberger AS (1962) Best linear unbiased prediction in the generalized linear regression model. J Am Stat Assoc 57:369–375

    Article  MATH  MathSciNet  Google Scholar 

  25. Huang JS, Ghosh M (1982) A note on strong unimodality of order statistics. J Am Stat Assoc 77:929–930

    Article  MATH  MathSciNet  Google Scholar 

  26. Huang JS, Ghosh M (1983) Corrigenda: “a note on strong unimodality of order statistics” [J Am Stat Assoc (1982) 77(380):929–930]. J Am Stat Assoc 78:1008

    Article  MathSciNet  Google Scholar 

  27. Ishii G (1978) Tokeiteki Yosoku (statistical prediction). In: Basic Sugaku, vol 7. Gendai-Sugakusha, Tokyo (in japanese)

    Google Scholar 

  28. Kambo N (1978) Maximum likelihood estimators of the location and scale parameters of the exponential distribution from a censored sample. Comm Stat Theory Meth 7:1129–1132

    Article  MathSciNet  Google Scholar 

  29. Kaminsky KS, Nelson PI (1975) Best linear unbiased prediction of order statistics in location and scale families. J Am Stat Assoc 70:145–150

    Article  MATH  MathSciNet  Google Scholar 

  30. Kaminsky KS, Rhodin L (1985) Maximum likelihood prediction. Ann Inst Stat Math 37:507–517

    Article  MATH  MathSciNet  Google Scholar 

  31. Kamps U, Cramer E (2001) On distributions of generalized order statistics. Statistics 35:269–280

    Article  MATH  MathSciNet  Google Scholar 

  32. Kim C, Han K (2009) Estimation of the scale parameter of the Rayleigh distribution under general progressive censoring. J Korean Stat Soc 38:239–246

    Article  MathSciNet  Google Scholar 

  33. Lawless JF (1971) A prediction problem concerning samples from the exponential distribution, with application in life testing. Technometrics 13:725–730

    Article  MATH  Google Scholar 

  34. Madi MT, Raqab MZ (2009) Bayesian inference for the generalized exponential distribution based on progressively censored data. Comm Stat Theory Meth 38:2016–2029

    Article  MATH  MathSciNet  Google Scholar 

  35. Mahalanobis PC, Bose SS, Ray PR, Banerji SK (1934) Tables of random samples from a normal population. Sankhyā 1:289–328

    Google Scholar 

  36. Mohie El-Din MM, Shafay AR (2013) One- and two-sample Bayesian prediction intervals based on progressively Type-II censored data. Stat Papers 54:287–307

    Article  MATH  MathSciNet  Google Scholar 

  37. Pradhan B, Kundu D (2009) On progressively censored generalized exponential distribution. TEST 18:497–515

    Article  MATH  MathSciNet  Google Scholar 

  38. Raqab MZ, Asgharzadeh A, Valiollahi R (2010) Prediction for Pareto distribution based on progressively Type-II censored samples. Comput Stat Data Anal 54:1732–1743

    Article  MATH  MathSciNet  Google Scholar 

  39. Schenk N, Burkschat M, Cramer E, Kamps U (2011) Bayesian estimation and prediction with multiply Type-II censored samples of sequential order statistics from one- and two-parameter exponential distributions. J Stat Plan Infer 141:1575–1587

    Article  MATH  MathSciNet  Google Scholar 

  40. Takada Y (1981) Relation of the best invariant predictor and the best unbiased predictor in location and scale families. Ann Stat 9:917–921

    Article  MATH  MathSciNet  Google Scholar 

  41. Takada Y (1991) Median unbiasedness in an invariant prediction problem. Stat Probab Lett 12:281–283

    Article  MATH  MathSciNet  Google Scholar 

  42. Thomas DR, Wilson WM (1972) Linear order statistic estimation for the two-parameter Weibull and extreme value distribution from Type-II progressively censored samples. Technometrics 14:679–691

    Article  MATH  Google Scholar 

  43. Tietjen GL, Kahaner DK, Beckman RJ (1977) Variances and covariances of the normal order statistics for sample sizes 2 to 50. In: Selected tables in mathematical statistics, vol 5. American Mathematical Society, Providence, pp 1–73

    Google Scholar 

  44. Wu SJ, Chen DH, Chen ST (2006a) Bayesian inference for Rayleigh distribution under progressive censored sample. Appl Stoch Models Bus Ind 22:269–279

    Article  MathSciNet  Google Scholar 

  45. Zacks S (1971) The theory of statistical inference. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balakrishnan, N., Cramer, E. (2014). Point Prediction from Progressively Type-II Censored Samples. In: The Art of Progressive Censoring. Statistics for Industry and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-4807-7_16

Download citation

Publish with us

Policies and ethics