Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 4496 Accesses

Abstract

The chapter begins with Section 4.1 in which motivational examples of random walks and stochastic phenomena in nature are presented. In Section 4.2 the concept of random processes is introduced in a more precise way. In Section 4.3 the concept of a Gaussian and Markov random process is developed. In Section 4.4 the important special case of white noise is defined. White noise is the driving force for all of the stochastic processes studied in this book. Other sections in this chapter define Itô and Stratonovich stochastic differential equations (SDEs), their properties and corresponding Fokker–Planck equations, which describe how probability densities associated with SDEs evolve over time. In particular, Section 4.7 examines the Fokker–Planck equation for a particular kind of SDE called an Ornstein–Uhlenbeck process. And Section 4.8 examines how SDEs and Fokker–Planck equations change their appearance when different coordinate systems are used. The main points that the reader should take away from this chapter are: Whereas a deterministic system of ordinary differential equations that satisfies certain conditions (i.e., the Lipschitz conditions) are guaranteed to have a unique solution for any given initial conditions, when random noise is introduced the resulting “stochastic differential equation” will not produce repeatable solutions. It is the ensemble behavior of the sample paths obtained from numerically solving a stochastic differential equation many times that is important. This ensemble behavior can be described either as a stochastic integral (of which there are two main types, called Itˆo and Stratonovich), or by using a partial differential equation akin to the diffusion equations studied in Chapter 2, which is called the Fokker–Planck (or forward Kolmogorov) equation. Two different forms of the Fokker–Planck equation exist, corresponding to the interpretation of the solution of a given SDE as being either an Itˆo or Stratonovich integral, and an analytical apparatus exists for converting between these forms. Multi-dimensional SDEs in Rn can be written in Cartesian or curvilinear coordinates, but care must be taken when converting between coordinate systems because the usual rules of multivariable calculus do not apply in some situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouleau, N., Lépingle, D., Numerical Methods for Stochastic Processes, John Wiley & Sons, New York, 1994.

    MATH  Google Scholar 

  2. Casimir, H.B.G., “On onsager's principle of microscopic reversibility,” Rev. Mod. Phys., 17(2–3), pp. 343–350, 1945.

    Article  Google Scholar 

  3. Chirikjian, G.S., Kyatkin, A.B., Engineering Applications of Noncommutative Harmonic Analysis, CRC Press, Boca Raton, FL, 2001.

    MATH  Google Scholar 

  4. Doob, J.L., Stochastic Processes, John Wiley & Sons, New York, 1953.

    MATH  Google Scholar 

  5. Durrett, R., Brownian Motion and Martingales in Analysis, Wadsworth, Belmont, CA, 1984.

    MATH  Google Scholar 

  6. Einstein, A., Investigations on the Theory of the Brownian Movement, Dover, New York, 1956.

    MATH  Google Scholar 

  7. Fokker, A.D., “Die Mittlere Energie rotierender elektrischer Dipole in Strahlungs Feld,” Ann. Phys., 43, pp. 810–820, 1914.

    Article  Google Scholar 

  8. Fowler, R.H., Statistical Mechanics, Cambridge University Press, London, 1929.

    MATH  Google Scholar 

  9. Fowler, R.H., Philos. Mag., 47, p. 264, 1924.

    Google Scholar 

  10. Gard, T.C., Introduction to Stochastic Differential Equations, Marcel Dekker, New York, 1988.

    MATH  Google Scholar 

  11. Gardiner, C.W., Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences, 3rd ed., Springer-Verlag, Berlin, 2004.

    Google Scholar 

  12. Higham, D.J., “An algorithmic introduction to numerical simulation of stochastic differential equations,” SIAM Rev., 43, pp. 525–546, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  13. Itô, K., McKean, H.P., Jr. Diffusion Processes and their Sample Paths, Springer-Verlag, Berlin, 1974.

    MATH  Google Scholar 

  14. Karatzas, I., Shreve, S.E., Brownian Motion and Stochastic Calculus, 2nd ed., Springer, New York, 1991.

    MATH  Google Scholar 

  15. Karlin, S., Taylor, H.M., An Introduction to Stochastic Modeling, 3rd ed., Academic Press, San Diego, 1998.

    MATH  Google Scholar 

  16. Kloedon, P.E., Platen, E., Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  17. Knight, F.B., Essentials of Brownian Motion, Math. Survey 18, American Mathematical Society, Providence, RI, 1981.

    MATH  Google Scholar 

  18. Kolmogorov, A.N., “Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung,” Math. Ann., 104, pp. 415–458, 1931.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuo, H.-H., Introduction to Stochastic Integration, Springer, New York, 2006.

    MATH  Google Scholar 

  20. Langevin, P., “Sur la théorie du mouvement brownien,” C. R. Acad. Sci. Paris, 146, pp. 530–533, 1908.

    MATH  Google Scholar 

  21. Lévy, P., Processsus stochastiques et mouvement brownien, Gauthiers-Villars, Paris, 1948 (and 1965).

    Google Scholar 

  22. Maruyama, G., “Continuous Markov processes and stochastic equations,” Rend. Circ. Mat. Palermo, 4, pp. 48–90, 1955.

    Article  MATH  MathSciNet  Google Scholar 

  23. McKean, H.P., Jr., Stochastic Integrals, Academic Press, New York, 1969.

    MATH  Google Scholar 

  24. McShane, E.J., Stochastic Calculus and Stochastic Models, Academic Press, New York, 1974.

    MATH  Google Scholar 

  25. Millstein, G.N., “A method of second order accuracy of stochastic differential equations,” Theory of Probability and Its Applications (USSR), 23, pp. 396–401, 1976.

    Article  Google Scholar 

  26. Millstein, G.N., Tretyakov, M.V., Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin, 2004.

    Google Scholar 

  27. Øksendal, B., Stochastic Differential Equations, An Introduction with Applications, 5th ed., Springer, Berlin, 1998.

    Google Scholar 

  28. Onsager, L., “Reciprocal relations in irreversible processes, I, II,” Phys. Rev., 37, pp. 405–426, 38, pp. 2265–2280, 1931.

    Article  MATH  Google Scholar 

  29. Planck, M., “Uber einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie,” Sitzungsber. Berlin Akad. Wiss., pp. 324–341, 1917.

    Google Scholar 

  30. Protter, P., Stochastic Integration and Differential Equations, Springer, Berlin, 1990.

    MATH  Google Scholar 

  31. Rényi, A., Probability Theory, North-Holland, Amsterdam, 1970.

    Google Scholar 

  32. Ripley, B.D., Stochastic Simulation, John Wiley & Sons, New York, 1987.

    Book  MATH  Google Scholar 

  33. Risken, H., The Fokker-Planck Equation, Methods of Solution and Applications, 2nd ed., Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  34. Rogers, L.C.G., Williams, D., Diffusion, Markov Processes, and Martingales, Vols. 1 and 2, John Wiley & Sons, New York, 1987.

    Google Scholar 

  35. Stratonovich, R.L., Topics in the Theory of Random Noise, Vols. I and II, (translated by R.A. Silverman), Gordon and Breach, New York, 1963.

    Google Scholar 

  36. Stroock, D., Varadhan, S.R.S., Multidimensional Diffusion Processes, Grundlehren Series #233, Springer-Verlag, Berlin, 1979 (and 1998).

    MATH  Google Scholar 

  37. Uhlenbeck, G.E., Ornstein, L.S., “On the theory of Brownian motion,” Phys. Rev., 36, pp. 823–841, 1930.

    Article  Google Scholar 

  38. van Kampen, N.G., Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  39. van Kampen, N.G., “Derivation of the phenomenological equations from the master equation: I. Even variables only; II. Even and odd variables,” Physica, 23, pp. 707–719, pp. 816–824, 1957.

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, M.C., Uhlenbeck, G.E., “On the theory of Brownian motion II,” Rev. Mod. Phys., 7, pp. 323–342, 1945.

    Article  MathSciNet  Google Scholar 

  41. Watanabe, S., Stochastic Differential Equations and Malliavin Calculus, Tata Institute, 1984.

    Google Scholar 

  42. Wiener, N., “Differential space,” J. Math. Phys., 2, pp. 131–174, 1923.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston

About this chapter

Cite this chapter

Chirikjian, G.S. (2009). Stochastic Differential Equations. In: Stochastic Models, Information Theory, and Lie Groups, Volume 1. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4803-9_4

Download citation

Publish with us

Policies and ethics