Advertisement

Geodetic Sets in Graphs

  • Boštjan Brešar
  • Matjaž Kovše
  • Aleksandra Tepeh
Chapter

Abstract

Geodetic sets in graphs are briefly surveyed. After an overview of earlier results, we concentrate on recent studies of the geodetic number and related invariants in graphs. Geodetic sets in Cartesian products of graphs and in median graphs are considered in more detail. Algorithmic issues and relations with several other concepts, arising from various convex and interval structures in graphs, are also presented.

Keywords

Geodetic number Geodetic set Cartesian product Median graph Boundary set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atici M (2002) Computational complexity of geodetic set. Int J Comput Math 79:587–591MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Atici M, Vince A (2002) Geodesics in graphs, an extremal set problem, and perfect hash families. Graph Combinator 18:403–413MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Balakrishnan K, Brešar B, Changat M et al (2009) On the remoteness function in median graphs. Discrete Appl Math 157(18):3679–3688MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bandelt H-J, Chepoi V (1996) Graphs of acyclic cubical complexes. Eur J Combinator 17: 113–120MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bandelt H-J, Mulder HM, Wilkeit E (1994) Quasi-median graphs and algebras. J Graph Theory 18:681–703MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bandelt H-J, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations using median networks. Genetics 14:743–753Google Scholar
  7. 7.
    Bielak H, Sysło M (1983) Peripheral vertices in graphs. Studia Sci Math Hungar 18:269–275MATHMathSciNetGoogle Scholar
  8. 8.
    Brandes U (2005) Network analysis. Methodological foundations. Lecture Notes in Computer Science, vol 3418. Springer, Berlin, pp 62–82Google Scholar
  9. 9.
    Brešar B (2003) Arboreal structure and regular graphs of median-like classes. Discuss Math Graph Theory 23:215–225MATHMathSciNetGoogle Scholar
  10. 10.
    Brešar B, Tepeh Horvat A (2008) On the geodetic number of median graphs. Discrete Math 308:4044–4051MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Brešar B, Changat M, Subhamathi AR, Tepeh Horvat A (2010) The periphery graph of a median graph. Discuss Math Graph Theory (to appear)Google Scholar
  12. 12.
    Brešar B, Klavžar S, Tepeh Horvat A (2008) On the geodetic number and related metric sets in Cartesian product graphs. Discrete Math 308:5555–5561MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Buckley F, Harary F (1986) Geodetic games for graphs. Quaest Math 8:321–334MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Buckley F, Harary F (1990) Distance in graphs. Addison-Wesley, Redwood CityMATHGoogle Scholar
  15. 15.
    Buckley F, Harary F, Quintas LV (1988) Extremal results on the geodetic number of a graph. Scientia 2A:17–26MathSciNetGoogle Scholar
  16. 16.
    Cáceres J, Hernando C, Mora M, Pelayo IM, Puertas ML, Seara C (2005) Searching for geodetic boundary vertex sets. Electron Notes Discrete Math 19:25–31CrossRefGoogle Scholar
  17. 17.
    Cáceres J, Márquez A, Oellermann OR, Puertas ML (2005) Rebuilding convex sets in graphs. Discrete Math 297:26–37MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Cáceres J, Hernando C, Mora M, Pelayo IM, Puertas ML, Seara C (2006) On geodetic sets formed by boundary vertices. Discrete Math 306:188–198MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Cáceres J, Hernando C, Mora M, Pelayo IM, Puertas ML, Seara C (2008) Geodecity of the contour of chordal graphs. Discrete Appl Math 156:1132–1142MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Cagaanan GB, Canoy SR (2004) On the hull sets and hull number of the Cartesian product of graphs. Discrete Math 287:141–144MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Cagaanan GB, Canoy SR (2006) On the geodetic covers and geodetic bases of the composition G[K m]. Ars Combinatoria 79:33–45MATHMathSciNetGoogle Scholar
  22. 22.
    Cagaanan GB, Canoy SR, Gervacio SV (2006) Convexity, geodetic, and hull numbers of the join of graphs. Utilitas Math 71:143–159MATHMathSciNetGoogle Scholar
  23. 23.
    Chae G, Palmer EM, Siu W (2002) Geodetic number of random graphs of diameter 2. Australas J Combinator 26:11–20MATHMathSciNetGoogle Scholar
  24. 24.
    Chang GJ, Tong L, Wang H (2004) Geodetic spectra of graphs. Eur J Combinator 25:383–391MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Chung FRK, Graham RL, Saks ME (1987) Dynamic search in graphs. In: Wilf H (ed) Discrete algorithms and complexity. Perspectives in Computing (Kyoto, 1986), vol 15. Academic, New York, pp 351–387Google Scholar
  26. 26.
    Chartrand G, Zhang P (1999) The forcing geodetic number of a graph. Discuss Math Graph Theory 19:45–58MATHMathSciNetGoogle Scholar
  27. 27.
    Chartrand G, Zhang P (2000) The geodetic number of an oriented graph. Eur J Combinator 21:181–189MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Chartrand G, Zhang P (2002) The Steiner number of a graph. Discrete Math 242:41–54MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Chartrand G, Zhang P (2002) Extreme geodesic graphs. Czech Math J 52:771–780MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Chartrand G, Harary F, Zhang P (2000) Geodetic sets in graphs. Discuss Math Graph Theory 20:129–138MATHMathSciNetGoogle Scholar
  31. 31.
    Chartrand G, Harary F, Zhang P (2002) On the geodetic number of a graph. Networks 39:1–6MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Chartrand G, Palmer EM, Zhang P (2002) The geodetic number of a graph: a survey. Congr Numer 156:37–58MATHMathSciNetGoogle Scholar
  33. 33.
    Chartrand G, Erwin D, Johns GL, Zhang P (2003) Boundary vertices in graphs. Discrete Math 263:25–34MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Chartrand G, Fink JF, Zhang P (2003) The hull number of an oriented graph. Int J Math Math Sci 36:2265–2275MathSciNetCrossRefGoogle Scholar
  35. 35.
    Chartrand G, Johns G, Zhang P (2003) The detour number of a graph. Utilitas Math 64:97–113MATHMathSciNetGoogle Scholar
  36. 36.
    Chartrand G, Erwin D, Johns GL, Zhang P (2004) On boundary vertices in graphs. J Combin Math Combin Comput 48:39–53MATHMathSciNetGoogle Scholar
  37. 37.
    Chartrand G, Johns GL, Zhang P (2004) On the detour number and geodetic number of a graph. Ars Combinator 72:3–15MATHMathSciNetGoogle Scholar
  38. 38.
    Chartrand G, Escuadro H, Zhang P (2005) Detour distance in graphs. J Combin Math Combin Comput 53:75–94MATHMathSciNetGoogle Scholar
  39. 39.
    Coppersmith D, Winograd S (1990) Matrix multiplication via arithmetic progressions. J Symbolic Comput 9:251–280MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Deza M, Deza E (2009) Encyclopedia of distances. Springer, Berlin HeidelbergMATHCrossRefGoogle Scholar
  41. 41.
    Djoković D (1973) Distance preserving subgraphs of hypercubes. J Combin Theory B 14: 263–267MATHCrossRefGoogle Scholar
  42. 42.
    Douthat AL, Kong MC (1995) Computing the geodetic number of bipartite graphs. Congr Numer 107:113–119MATHMathSciNetGoogle Scholar
  43. 43.
    Douthat AL, Kong MC (1996) Computing geodetic bases of chordal and split graphs. J Combin Math Combin Comput 22:67–78MATHMathSciNetGoogle Scholar
  44. 44.
    Duchet P (1988) Convex sets in graphs II. Minimal path convexity. J Combin Theory B 44: 307–316MATHMathSciNetGoogle Scholar
  45. 45.
    Eppstein D (2005) The lattice dimension of a graph. Eur J Combinator 26:585–592MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Eroh L, Oellermann OR (2008) Geodetic and Steiner geodetic sets in 3-Steiner distance hereditary graphs. Discrete Math 308:4212–4220MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Everett MG, Seidman SB (1985) The hull number of a graph. Discrete Math 57:217–223MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Farber M, Jamison RE (1986) Convexity in graphs and hypergraphs. SIAM J Algebraic Discrete Math 7:433–444MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Farrugia A (2005) Orientable convexity, geodetic and hull numbers in graphs. Discrete Appl Math 148:256–262MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Fraenkel AS, Harary F (1989) Geodetic contraction games on graphs. Int J Game Theory 18:327–338MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Hansen P, van Omme N (2007) On pitfalls in computing the geodetic number of a graph. Opt Lett 1:299–307MATHCrossRefGoogle Scholar
  52. 52.
    Harary F, Loukakis E, Tsouros C (1993) The geodetic number of a graph. Math Comput Model 17:89–95MATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Haynes TW, Henning MA, Tiller C (2003) Geodetic achievement and avoidance games for graphs. Quaest Math 26:389–397MATHMathSciNetGoogle Scholar
  54. 54.
    Hernando C, Jiang T, Mora M, Pelayo I, Seara C (2005) On the Steiner, geodetic and hull numbers of graphs. Discrete Math 293:139–154MATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    Hernando C, Mora M, Pelayo I, Seara C (2006) Some structural, metric and convex properties on the boundary of a graph. Electron Notes Discrete Math 24:203–209MathSciNetCrossRefGoogle Scholar
  56. 56.
    Hernando C, Mora M, Pelayo I, Seara C On monophonic sets in graphs. ManuscriptGoogle Scholar
  57. 57.
    Howorka E (1977) A characterization of distance hereditary graphs. Q J Math Oxford, 28: 417–420MATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Hung J, Tong L, Wang H (2009) The hull and geodetic numbers of orientations of graphs. Discrete Math 309:2134–2139MATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Imrich W, Klavžar S (1999) Recognizing graphs of acyclic cubical complexes. Discrete Appl Math 95:321–330MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    Imrich W, Klavžar S, Mulder HM (1999) Median graphs and triangle-free graphs. SIAM J Discrete Math 12:111–118MATHMathSciNetCrossRefGoogle Scholar
  61. 61.
    Imrich W, Klavžar S (2000) Product graphs: structure and recognition. Wiley, NYMATHGoogle Scholar
  62. 62.
    Jamison RE (1980) Copoints in antimatroids. Congr Numer 29:535–544MathSciNetGoogle Scholar
  63. 63.
    Jiang T, Pelayo I, Pritikin D (2004) Geodesic convexity and Cartesian products in graphs. ManuscriptGoogle Scholar
  64. 64.
    Klavžar S, Mulder HM (1999) Median graphs: characterizations, location theory and related structures. J Combin Math Combin Comp 30:103–127MATHGoogle Scholar
  65. 65.
    Korte B, Lovász L (1986) Homomorphisms and Ramsey properties of antimatroids. Discrete Appl Math 15:283–290MATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    Kubicka E, Kubicki G, Oellermann OR (1998) Steiner intervals in graphs. Discrete Math 81:181–190MATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    Leclerc B (2003) The median procedure in the semilattice of orders. Discrete Appl Math 127:285–302MATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    Lu C (2007) The geodetic numbers of graphs and digraphs. Sci China Ser A 50:1163–1172MATHMathSciNetCrossRefGoogle Scholar
  69. 69.
    Morgana MA, Mulder HM (2002) The induced path convexity, betweenness and svelte graphs. Discrete Math 254:349–370MATHMathSciNetCrossRefGoogle Scholar
  70. 70.
    Mulder HM (1978) The structure of median graphs. Discrete Math 24:197–204MATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    Mulder HM (1980) n-Cubes and median graphs. J Graph Theory 4:107–110MATHMathSciNetCrossRefGoogle Scholar
  72. 72.
    Mulder HM (1980) The interval function of a graph. Mathematical Centre Tracts 132. Mathematisch Centrum, AmsterdamGoogle Scholar
  73. 73.
    Mulder HM (1990) The expansion procedure for graphs. In: Bodendiek R (ed) Contemporary methods in graph theory. Manhaim/Wien/Zürich: B.I. WissenschaftsverlagGoogle Scholar
  74. 74.
    Mulder HM (2008) Transit functions on graphs (and posets). In: Changat M, Klavžar S, Mulder HM, Vijayakumar A (eds) Convexity in discrete structures. Lecture Notes Ser. 5, Ramanujan Math Soc, pp 117–130Google Scholar
  75. 75.
    Necásková M (1988) A note on the achievement geodetic games. Quaest Math 12:115–119CrossRefGoogle Scholar
  76. 76.
    Oellermann OR, Puertas ML (2007) Steiner intervals and Steiner geodetic numbers in distance-hereditary graphs. Discrete Math 307:88–96MATHMathSciNetCrossRefGoogle Scholar
  77. 77.
    Pelayo I (2004) Comment on: “The Steiner number of a graph” by Chartrand G, Zhang P [Discrete Math 242:1–3, 41–54 (2002)]. Discrete Math 280:259–263MATHMathSciNetCrossRefGoogle Scholar
  78. 78.
    Tong L (2009) The (a,b)-forcing geodetic graphs. Discrete Math 309:1623–1628MATHMathSciNetCrossRefGoogle Scholar
  79. 79.
    Tong L (2009) The forcing hull and forcing geodetic numbers of graphs. Discrete Appl Math 157:1159–1163MATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    van de Vel MLJ (1993) Theory of convex structures. North Holland, AmsterdamGoogle Scholar
  81. 81.
    Wang F, Wang Y, Chang J (2006) The lower and upper forcing geodetic numbers of block-cactus graphs. Eur J Oper Res 175:238–245MATHMathSciNetCrossRefGoogle Scholar
  82. 82.
    William HE, McMorris FR (2003) Axiomatic concensus theory in group choice and bioinformatics. J Soc Ind Appl Math:91–94Google Scholar
  83. 83.
    Winkler P (1984) Isometric embeddings in products of complete graphs. Discrete Appl Math 7:221–225MATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    Ye Y, Lu C, Liu Q (2007) The geodetic numbers of Cartesian products of graphs. Math Appl (Wuhan) 20:158–163MATHMathSciNetGoogle Scholar
  85. 85.
    Zhang P (2002) The upper forcing geodetic number of a graph. Ars Combinatoria 62:3–15MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Boštjan Brešar
  • Matjaž Kovše
  • Aleksandra Tepeh
    • 1
  1. 1.University of Maribor, FEECSMariborSlovenia

Personalised recommendations