Application of Infinite Labeled Graphs to Symbolic Dynamical Systems

Chapter

Abstract

We apply a theory of infinite labeled graphs to studying presentations and classifications of symbolic dynamical systems, by introducing a class of infinite labeled graphs, called λ-graph systems. Its matrix presentation is called a symbolic matrix system. The notions of a λ-graph system and symbolic matrix system are generalized notions of a finite labeled graph and symbolic matrix for sofic subshifts to general subshifts. Strong shift equivalence and shift equivalence between symbolic matrix systems are formulated so that two subshifts are topologically conjugate if and only if the associated canonical symbolic matrix systems are strong shift equivalent. We construct several kinds of shift equivalence invariants for symbolic matrix systems. They are the dimension groups, the K-groups, and the Bowen–Franks groups that are generalizations of the corresponding notions for nonnegative matrices. They yield topological conjugacy invariants of subshifts. The entropic quantities called λ-entropy and volume entropy for λ-graph systems are also studied related to the topological entropy of symbolic dynamics.

Keywords

Subshifts Symbolic dynamics λ-Graph systems Strong shift equivalence Bowen–Franks group K-theory Topological entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author would like to deeply thank Matthias Dehmer and Jun Ichi Fujii for their invitation to the author to write this chapter and for their helpful suggestions in the presentation of this paper.

References

  1. 1.
    Bates T, Pask D (2007) C -algebras of labelled graphs. J Oper Theory 57:207–226MATHMathSciNetGoogle Scholar
  2. 2.
    Blanchard F, Hansel G (1986) Systems codés. Theor Comput Sci 44:17–49MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bowen R, Franks J (1977) Homology for zero-dimensional nonwandering sets. Ann Math 106:73–92CrossRefMathSciNetGoogle Scholar
  4. 4.
    Boyle M, Krieger W (1988) Almost Markov and shift equivalent sofic systems. In: Proceedings of Maryland special year in dynamics 1986–1987. Lecture Notes in Mathematics, vol 1342. Springer, pp 33–93Google Scholar
  5. 5.
    Bratteli O (1972) Inductive limits of finite-dimensional C -algebras. Trans Am Math Soc 171:195–234MATHMathSciNetGoogle Scholar
  6. 6.
    Brown LG (1983) The universal coefficient theorem for Ext and quasidiagonality. Operator Algebras and Group Representation, vol 17. Pitmann Press, Boston, pp 60–64Google Scholar
  7. 7.
    Carlsen TM, Eilers S (2004) Matsumoto K-groups associated to certain shift spaces. Doc Math 9:639–671MATHMathSciNetGoogle Scholar
  8. 8.
    Carlsen TM, Eilers S (2006) K-groups associated to substitutional dynamics. J Funct Anal 238:99–117MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chomsky N, Schützenberger MP (1963) The algebraic theory of context-free languages. In: Braffort P, Hirschberg D (eds) Computer programing and formal systems. North-Holland, Amsterdam, pp 118–161CrossRefGoogle Scholar
  10. 10.
    Cuntz J, Krieger W (1980) A class of C -algebras and topological Markov chains. Invent Math 56:251–268MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Denker M, Grillenberger C, Sigmund K (1976) Ergodic theory on compact spaces. Springer, Berlin, Heidelberg and New YorkMATHGoogle Scholar
  12. 12.
    Effros EG (1981) Dimensions and C -algebras. In: AMS-CBMS Reg Conf Ser Math, vol 46. American Mathematical Society, Providence, RIGoogle Scholar
  13. 13.
    Enomoto M, Fujii M, Watatani Y (1984) KMS states for gauge action on \({\mathcal{O}}_{A}\). Math Japon 29:607–619MATHMathSciNetGoogle Scholar
  14. 14.
    Fischer R (1975) Sofic systems and graphs. Monats für Math 80:179–186MATHCrossRefGoogle Scholar
  15. 15.
    Franks J (1984) Flow equivalence of subshifts of finite type. Ergod Theory Dyn Syst 4:53–66MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hamachi T, Nasu M (1988) Topological conjugacy for 1-block factor maps of subshifts and sofic covers. In: Proceedings of Maryland special year in dynamics 1986–1987. Lecture Notes in Mathematics, vol 1342. Springer, pp 251–260Google Scholar
  17. 17.
    Hopcroft JE, Ullman JD (2001) Introduction to automata theory, languages, and computation. Addison-Wesley, Reading, MAMATHGoogle Scholar
  18. 18.
    Katayama Y, Matsumoto K, Watatani Y (1998) Simple C -algebras arising from β-expansion of real numbers. Ergod Theory Dyn Syst 18:937–962MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kim KH, Roush FW (1979) Some results on decidability of shift equivalence. J Combin Inf Syst Sci 4:123–146MATHMathSciNetGoogle Scholar
  20. 20.
    Kim KH, Roush FW (1999) Williams conjecture is false for irreducible subshifts. Ann Math 149:545–558MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kitchens BP (1998) Symbolic dynamics. Springer, BerlinMATHGoogle Scholar
  22. 22.
    Krieger W (1974) On the uniqueness of the equilibrium state. Math Syst Theory 8:97–104CrossRefMathSciNetGoogle Scholar
  23. 23.
    Krieger W (1980) On dimension for a class of homeomorphism groups. Math Ann 252:87–95MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Krieger W (1980) On dimension functions and topological Markov chains. Invent Math 56:239–250MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Krieger W (1984) On sofic systems I. Isr J Math 48:305–330MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Krieger W (1987) On sofic systems II. Isr J Math 60:167–176MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Krieger W (2000) On subshifts and topological Markov chains. Numbers, Information and Complexity (Bielefeld 1998). Kluwer, Boston, MA, pp 453–472Google Scholar
  28. 28.
    Krieger W, Matsumoto K (2002) Shannon graphs, subshifts and lambda-graph systems. J Math Soc Jpn 54:877–900MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Krieger W, Matsumoto K (2003) A lambda-graph system for the Dyck shift and its K-groups. Doc Math 8:79–96MATHMathSciNetGoogle Scholar
  30. 30.
    Krieger W, Matsumoto K (2004) A class of topological conjugacy of subshifts. Ergod Theory Dyn Syst 24:1155–1172MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Krieger W, Matsumoto K (2010) Subshifts and C ​-algebras from one-counter codes. Contemporary Math AMS (to appear)-10pt]Please update reference [31].Google Scholar
  32. 32.
    Kumjian A, Pask D, Raeburn I, Renault J (1997) Graphs, groupoids and Cuntz–Krieger algebras. J Funct Anal 144:505–541CrossRefMathSciNetGoogle Scholar
  33. 33.
    Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  34. 34.
    Matsumoto K (1999) A simple C -algebra arising from certain subshift. J Oper Theory 42:351–370MATHGoogle Scholar
  35. 35.
    Matsumoto K (1999) Dimension groups for subshifts and simplicity of the associated C -algebras. J Math Soc Jpn 51:679–698MATHCrossRefGoogle Scholar
  36. 36.
    Matsumoto K (1999) Presentations of subshifts and their topological conjugacy invariants. Doc Math 4:285–340MATHMathSciNetGoogle Scholar
  37. 37.
    Matsumoto K (2000) Stabilized C -algebras constructed from symbolic dynamical systems. Ergod Theor Dyn Syst 20:821–841MATHCrossRefGoogle Scholar
  38. 38.
    Matsumoto K (2001) Bowen–Franks groups for subshifts and Ext-groups for C -algebras. K Theor 23:67–104Google Scholar
  39. 39.
    Matsumoto K (2001) Bowen–Franks groups as an invariant for flow equivalence of subshifts. Ergod Theory Dyn Syst 21:1831–1842MATHGoogle Scholar
  40. 40.
    Matsumoto K (2002) C -algebras associated with presentations of subshifts. Doc Math 7:1–30MATHMathSciNetGoogle Scholar
  41. 41.
    Matsumoto K (2003) On strong shift equivalence of symbolic matrix systems. Ergod Theory Dyn Syst 23:1551–1574MATHCrossRefGoogle Scholar
  42. 42.
    Matsumoto K (2005) Topological entropy in C -algebras associated with λ-graph systems. Ergod Theor Dyn Syst 25:1935–1951MATHCrossRefGoogle Scholar
  43. 43.
    Matsumoto K (2005) K-theoretic invariants and conformal measures on the Dyck shifts. Int J Math 16:213–248MATHCrossRefGoogle Scholar
  44. 44.
    Matsumoto K (2007) Actions of symbolic dynamical systems on C -algebras. J Reine Angew Math 605:23–49MATHMathSciNetGoogle Scholar
  45. 45.
    Matsumoto K A class of simple C -algebras arising from certain nonsofic subshifts. Preprint, arxiv:0805.2767Google Scholar
  46. 46.
    Matsumoto K, Watatani Y, Yoshida M (1998) KMS-states for gauge actions on C -algebras associated with subshifts. Math Z 228:489–509MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Nasu M (1986) Topological conjugacy for sofic shifts. Ergod Theory Dyn Syst 6:265–280MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Nasu M (1995) Textile systems for endomorphisms and automorphisms of the shift. Mem Am Math Soc 114:546MathSciNetGoogle Scholar
  49. 49.
    Parry W, Sullivan D (1975) A topological invariant for flows on one-dimensional spaces. Topology 14:297–299MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Tuncel S (1983) A dimension, dimension modules, and Markov chains. Proc Lond Math Soc 46:100–116MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Weiss B (1973) Subshifts of finite type and sofic systems. Monatsh Math 77:462–474MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Williams RF (1973) Classification of subshifts of finite type. Ann Math 98:120–153. Erratum (1974) Ann Math 99:380–381Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsJoetsu University of EducationJoetsuJapan

Personalised recommendations