Distance in Graphs



The distance between two vertices is the basis of the definition of several graph parameters including diameter, radius, average distance and metric dimension. These invariants are examined, especially how they relate to one another and to other graph invariants and their behaviour in certain graph classes. We also discuss characterizations of graph classes described in terms of distance or shortest paths. Finally, generalizations are considered.


Graph Distance Diameter Radius Steiner distance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank Peter Dankelmann for sharing his thoughts on average distance with us.


  1. 1.
    Althöfer I (1990) Average distances in undirected graphs and the removal of vertices. J Combin Theory B 48(1):140–142MATHCrossRefGoogle Scholar
  2. 2.
    Bandelt H-J, Mulder HM (1986) Distance–hereditary graphs. J Combin Theory B 41:182–208MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beezer RA, Riegsecker JE, Smith BA (2001) Using minimum degree to bound average distance. Discrete Math 226:365–371MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Beineke LW, Oellermann OR, Pippert RE (1996) On the Steiner median of a tree. Discrete Appl Math 68:249–258MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bienstock D, Györi E (1988) Average distance in graphs with removed elements. J Graph Theory 12(3):375–390MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bonato A (2005) A survey of models of the web graph. In: Combinatorial and algorithmic aspects of networking, vol 3405, Lecture notes in computer science. Springer, Berlin, pp 159–172Google Scholar
  7. 7.
    Buckley F, Harary F (1990) Distance in graphs. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CAMATHGoogle Scholar
  8. 8.
    Buckley F, Lewinter M (1988) A note on graphs with diameter-preserving spanning trees. J Graph Theory 12(4):525–528MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Buckley F, Miller Z, Slater PJ (1981) On graphs containing a given graph as center. J Graph Theory 5:427–432MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cáceres J, Hernando C, Mora M, Pelayo IM, Puertas ML, Seara C, Wood DR (2007) On the metric dimension of the cartesian product of graphs. SIAM J Discrete Math 21(2):423–441MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cáceres J, Oellermann OR (2009) On 3-Steiner simplicial orderings. Discrete Math 309: 5828–5833MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chartrand G, Eroh L, Johnson MA, Oellermann OR (2000) Resolvability in graphs and the metric dimension of a graph. Discrete Appl Math 105:99–113MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chartrand G, Oellermann OR, Tian S, Zou HB (1989) Steiner distance in graphs. Časopis Pro Pěstování Matematiky 114(4):399–410MATHMathSciNetGoogle Scholar
  14. 14.
    Chung FRK (1988) The average distance and the independence number of a graph. J Graph Theory 12:229–235MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chvátal V, Thomassen C (1978) Distances in orientations of graphs. J Combin Theory B 24:61–75CrossRefGoogle Scholar
  16. 16.
    Cockayne EJ, Hedetniemi SM, Hedetniemi ST (1981) Linear algorithms for finding the Jordan center and path center of a tree. Transport Sci 15:98–114CrossRefMathSciNetGoogle Scholar
  17. 17.
    Dankelmann P Average distance in graphs – a survey, (submitted)Google Scholar
  18. 18.
    Dankelmann P, Oellermann OR, Swart HC (1996) The average Steiner distance of a graph. J Graph Theory 22(1):15–22MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dankelmann P, Oellermann OR, Wu J-L (2004) Minimum average distance of strong orientations of graphs. Discrete Appl Math 143:204–212MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    D’Atri A, Moscarini M (1988) Steiner trees and connected domination. SIAM J Discrete Math 17:521–538MathSciNetGoogle Scholar
  21. 21.
    Dirac GA (1961) On rigid circuit graphs. Abh Math Sem Univ Hamburg 25:71–76MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Doyle JK, Graver JE (1977) Mean distance in a graph. Discrete Math 7(2):147–154CrossRefMathSciNetGoogle Scholar
  23. 23.
    Dragan FF, Nicolai F, Brandstädt A (1999) Convexity and HHD-free graphs. SIAM J Discrete Math 12:119–135MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Entringer RC, Jackson DE, Snyder DA (1976) Distance in graphs. Czech Math J 26:283–296MathSciNetGoogle Scholar
  25. 25.
    Entringer RC, Kleitman DJ, Székely LA (1996) A note on spanning trees with minimum average distance. Bull Inst Combinator Appl 17:71–78MATHGoogle Scholar
  26. 26.
    Erdös P, Rényi A (1963) On two problems of information theory. Magyar Tud Akad Mat Kutató Int Közl 8:229–243MATHGoogle Scholar
  27. 27.
    Fajtlowicz S (1986) On two conjectures of GRAFFITI. Congr Numer 55:51–56MathSciNetGoogle Scholar
  28. 28.
    Fajtlowicz S (1987) On conjectures of GRAFFITI II. Congr Numer 60:187–197MathSciNetGoogle Scholar
  29. 29.
    Farber M, Jamison RE (1986) Convexity in graphs and hypergraphs. SIAM J Algebra Discrete Methods 7:433–444MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Favaron O, Kouider M, Mahéo M (1989) Edge-vulnerability and mean distance. Networks 19(5):493–504MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5:345CrossRefGoogle Scholar
  32. 32.
    Freeman LC (1978/1979) Centrality in social networks: conceptual clarification. Soc Networks 1:215–239Google Scholar
  33. 33.
    Füredi Z, Horak P, Pareek CM, Zhu X (1998) Minimal oriented graphs of diameter 2. Graph Combinator 14:345–350MATHCrossRefGoogle Scholar
  34. 34.
    Garey MR, Johnson DS (1979) Computers and intractibility: a guide to the theory of NP-completeness. W.H. Freeman and Company, New YorkMATHGoogle Scholar
  35. 35.
    Goddard W, Swart CS, Swart HC (2005) On the graphs with maximum distance or k-diameter. Math Slovaca 55(2):131–139MATHMathSciNetGoogle Scholar
  36. 36.
    Györi E (1988) On Winkler’s four thirds conjecture on mean distance in graphs. Congr Numer 61:259–262MathSciNetGoogle Scholar
  37. 37.
    Hammer PL, Maffray F (1990) Completely separable graphs. J Discrete Appl Math 27:85–99MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Harary F (1962) The maximum connectivity of a graph. Proc Natl Acad Sci USA 48: 1142–1146MATHCrossRefGoogle Scholar
  39. 39.
    Harary F, Melter RA (1976) On the metric dimension of a graph. Ars Combinatoria 2:191–195MathSciNetGoogle Scholar
  40. 40.
    Harary F, Norman RZ (1953) The dissimilarity characteristic of Husimi trees. Ann Math (2) 58:134–141Google Scholar
  41. 41.
    Howorka E (1977) A characterization of distance-hereditary graphs. Quart J Math Oxford 28:417–420MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42CrossRefGoogle Scholar
  43. 43.
    Johnson DS, Lenstra JK, Rinnooy-Kan AHG (1978) The complexity of the network design problem. Networks 8:279–285MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Jordan C (1869) Sur les assembalges des lignes. J Reine Angew Math 70:185–190Google Scholar
  45. 45.
    Khuller S, Raghavachari B, Rosenfeld A (1996) Landmarks in graphs. Discrete Appl Math 70(3):217–229MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Kouider M, Winkler P (1997) Mean distance and minimum degree. J Graph Theory 25:95–99MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Landau HG (1953) On dominance relations and the structure of animal societies. III. The condition for a score structure. Bull Math Biophys 15:143–148Google Scholar
  48. 48.
    Laskar R, Shier D (1983) On powers and centers of chordal graphs. Discrete Appl Math 6(2):139–147MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Lekkerkerker CG, Boland J (1962) Representation of a finite graph by a set of intervals on the real line. Fund Math 51:45–64MATHMathSciNetGoogle Scholar
  50. 50.
    Lindström B (1964) On a combinatory detection problem. I. Magyar Tud Akad Mat Kutató Int Közl 9:195–207MATHGoogle Scholar
  51. 51.
    Lovász L (1979) Combinatorial problems and exercises. Akadémiai Kiadó, BudapsetMATHGoogle Scholar
  52. 52.
    March L, Steadman P (1974) The geometry of environment: an introduction to spatial organization in design. MIT Press, Cambridge, MAGoogle Scholar
  53. 53.
    Merris R (1989) An edge version of the matrix-tree theorem and the Wiener index. Linear Multilinear Algebra 25(4):291–296MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Mohar B (1991) Eigenvalues, diameter, and mean distance in graphs. Graph Combinator 7(1):53–64MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Mulder HM (1980) The interval function of a graph. Mathematical Centre Tracts, AmsterdamMATHGoogle Scholar
  56. 56.
    Mulder HM (1980) n-cubes and median graphs. J Graph Theory 4:107–110MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Ng CP, Teh HH (1966/1967) On finite graphs of diameter 2. Nanta Math 1:72–75Google Scholar
  58. 58.
    Nielsen M, Oellermann OR (2009) Steiner trees and convex geometries. SIAM J Discrete Math 23:680–693MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Oellermann OR (1995) From Steiner centers to Steiner medians. J Graph Theory 20(2): 113–122MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Oellermann OR, Tian S (1990) Steiner centers in graphs. J Graph Theory 14(5):585–597MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Plesník J (1975) Note on diametrically critical graphs. In: Recent advances in graph theory (Proceedings of the 2nd Czechoslovak symposium, Prague, 1974). Academia, Prague, pp 455–465Google Scholar
  62. 62.
    Plesník J (1984) On the sum of all distance in a graph or digraph. J Graph Theory 8:1–24MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Robbins HE (1939) Questions, discussions, and notes: a theorem on graphs, with an application to a problem of traffic control. Am Math Mon 46(5):281–283CrossRefMathSciNetGoogle Scholar
  64. 64.
    Rodriguez JA, Yebra JLA (1999) Bounding the diameter and the mean distance of a graph from its eigenvalues: Laplacian versus adjacency matrix methods. Discrete Math 196(1–3):267–275MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Sebö A, Tannier E (2004) On metric generators of graphs. Math Oper Res 29(2):383–393MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Slater PJ (1975) Leaves of trees. Congr Numer 14:549–559MathSciNetGoogle Scholar
  67. 67.
    Slater PJ (1978) Centers to centroids in graphs. J Graph Theory 2:209–222MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Slater PJ (1981) Centrality of paths and vertices in a graph: cores and pits. In: The theory and applications of graphs. Wiley, New York, pp 529–542Google Scholar
  69. 69.
    S̆oltés L (1991) Transmission in graphs: a bound and vertex removing. Math Slovaca 41(1): 11–16Google Scholar
  70. 70.
    Swart CS (1996) Distance measures in graphs and subgraphs. Master’s thesis, University of Natal, DurbanGoogle Scholar
  71. 71.
    Vizing VG (1967) On the number of edges in a graph with a given radius. Dokl Akad Nauk SSSR 173:1245–1246MathSciNetGoogle Scholar
  72. 72.
    Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69(1): 17–20CrossRefGoogle Scholar
  73. 73.
    Winkler P (1986) Mean distance and the four thirds conjecture. Congr Numer 54:53–61Google Scholar
  74. 74.
    Winkler P (1989) Graph theory in memory of G.A. Dirac. In: Proceedings of meeting in Sandbjerg, Denmark, 1985, Ann Discrete Math, North-Holland, AmsterdamGoogle Scholar
  75. 75.
    Winter P (1987) Steiner problem in networks: a survey. Networks 17:129–167MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Wong R (1980) Worst-case analysis of network design problem heuristics. SIAM J Algebra Discrete Methods 1:51–63MATHCrossRefGoogle Scholar
  77. 77.
    Zelinka B (1968) Medians and peripherians of trees. Arch Math (Brno) 4:87–95MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Computing and Department of Mathematical SciencesClemson UniversityClemsonUSA

Personalised recommendations