Advertisement

Some Applications of Eigenvalues of Graphs

  • Sebastian M. Cioabă
Chapter

Abstract

The main goal of spectral graph theory is to relate important structural properties of a graph to its eigenvalues. In this chapter, we survey some old and new applications of spectral methods in graph partitioning, ranking, and epidemic spreading in networks and clustering.

Keywords

Eigenvalues Graph Partition Laplacian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by a start-up grant from the Department of Mathematical Sciences at the University of Delaware. The author is grateful to the referees for their comments.

References

  1. 1.
    Alon N (1986) Eigenvalues and expanders. Combinatorica 6:83–96MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alon N (1996) Bipartite subgraphs. Combinatorica 16:301–311MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alon N, Bollobás B, Krivelevich M, Sudakov B (2003) Maximum cuts and judicious partitions of graphs without short cycles. J Combin Theory B 88:329–346MATHCrossRefGoogle Scholar
  4. 4.
    Alon N, Capalbo M (2007) Finding disjoint paths in expanders deterministically and online. In: FOCS, pp 518–524Google Scholar
  5. 5.
    Alon N, Krivelevich M, Sudakov B (1999) List coloring of random and pseudo-random graphs. Combinatorica 19:453–472MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alon N, Milman V (1985) λ1, Isoperimetric inequalities for graphs and superconcentrators. J Combin Theory B 38:73–88MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Andersen R, Chung F, Lang K (2006) Local graph partitioning using pagerank vectors. In: Proceedings of the 47th annual IEEE symposium on foundation of computer science, pp 475–486Google Scholar
  8. 8.
    Bezrukov S, Elsässer R, Monien B, Preis R, Tillich J-P (2004) New spectral lower bounds on the bisection width of graphs. Theor Comput Sci 320:155–174MATHCrossRefGoogle Scholar
  9. 9.
    Bollobás B (1998) Modern graph theory. Graduate texts in mathematics, vol 184. Springer, New YorkGoogle Scholar
  10. 10.
    Bollobás B, Nikiforov V (2004) Graphs and Hermitian matrices: eigenvalue interlacing. Discrete Math 289:119–127MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. Comput Netw ISDN Syst 30:107–117CrossRefGoogle Scholar
  12. 12.
    Brouwer A, Haemers W (2005) Eigenvalues and perfect matchings. Lin Algebra Appl 395:155–162MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Brouwer A, Haemers W (2010) Spectra of graphs. Monograph in preparation +200pp, available at http://homepages.cwi.nl/~aeb/math/ipm.pdf
  14. 14.
    Brouwer A, Koolen J (2009) The vertex connectivity of a distance regular graph. Eur J Combinator 30:668–673MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Brouwer A, Mesner DM (1985) The connectivity of strongly regular graphs. Eur J Combinator 6:215–216MATHMathSciNetGoogle Scholar
  16. 16.
    Bui TN, Chaudhuri S, Leighton FT, Sipser M (1987) Graph bisection algorithms with good average case behaviour. Combinatorica 2:171–191CrossRefMathSciNetGoogle Scholar
  17. 17.
    Butler S, Chung F (2010) Small spectral gap in the combinatorial Laplacian implies Hamiltonian. Ann Combinator (in press)Google Scholar
  18. 18.
    Chung FRK (1997) Spectral graph theory. American Mathematical Society, Providence, RIMATHGoogle Scholar
  19. 19.
    Chung FRK (2004) Discrete isoperimetric inequalities. Surveys in differential geometry IX. International Press, Somerville, MA, pp 53–82Google Scholar
  20. 20.
    Chung FRK (2007) Four proofs of the Cheeger inequality and graph paritition algorithms. In: Proceedings of ICCM, vol IIGoogle Scholar
  21. 21.
    Chung FRK (2007) Random walks and local cuts in graphs. Lin Algebra Appl 423:22–32MATHCrossRefGoogle Scholar
  22. 22.
    Cioabă SM (2010) Eigenvalues and edge-connectivity of regular graphs. Lin Algebra Appl 432:458–470MATHCrossRefGoogle Scholar
  23. 23.
    Collatz L, Sinogowitz U (1957) Spektren endlicher Grafen. Abh Math Sem Univ Hamburg 21:63–77MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Cvetković D, Doob M, Sachs H (1980) Spectra of graphs – theory and application. Academic, New York, 3rd edn, Johann Ambrosius Barth (1995)Google Scholar
  25. 25.
    Cvetković D, Rowlinson P, Simic S (1997) Eigenspaces of graphs. Cambridge University Press, CambridgeMATHGoogle Scholar
  26. 26.
    de Klerk E, Pasechnik DV (2007) A note on the stability of an orthogonality graph. Eur J Combinator 28:1971–1979MATHCrossRefGoogle Scholar
  27. 27.
    Delsarte P (1973) An algebraic approach to the association schemes of coding theory. Philips Res Rep Suppl 10:1–97MathSciNetGoogle Scholar
  28. 28.
    Diáz J, Do N, Serna MJ, Wormald NC (2003) Bounds on the max and min bisection of random cubic and random 4-regular graphs. Theor Comput Sci 307:531–548MATHCrossRefGoogle Scholar
  29. 29.
    Donath WE, Hoffman AJ (1973) Lower bounds for the partitioning of the graphs. IBM J Res Dev 17:420–425MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Draief M, Ganesh A, Massoulié L. Thresholds for virus spread on networks, available at http://arxiv.org/abs/math/0606514
  31. 31.
    Elsässer R, Lücking T, Monien B (2003) On spectral bounds for the k-partitioning of graphs. Theor Comput Syst 36:461–478MATHCrossRefGoogle Scholar
  32. 32.
    Fiedler M (1973) Algebraic connectivity of graphs. Czech Math J 23:298–305MathSciNetGoogle Scholar
  33. 33.
    Fiedler M (1975) A property of eigenvectors of non-negative symmetric matrices and its applications to graph theory. Czech Math J 85:619–633MathSciNetGoogle Scholar
  34. 34.
    Garey MR, Johnson DS, Stockmeyer L (1976) Some simplified NP-complete graph problems. Theor Comput Sci 1:237–267MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Gilbert J, Hutchinson J, Tarjan R (1984) A separation theorem for graphs of bounded genus. J Algorithm 5:391–407MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Godsil CD, Newman MW (2008) Coloring an orthogonality graph. SIAM J Discrete Math 22:683–692MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Godsil CD, Newman MW (2008) Eigenvalue bounds for independent sets. J Combin Theory B 98:721–734MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Godsil CD, Royle G (2001) Algebraic graph theory. Springer, BerlinMATHGoogle Scholar
  39. 39.
    Guattery S, Miller GL (1998) On the quality of spectral separators. SIAM J Matrix Anal Appl 19:701–719MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Haemers W (1995) Interlacing eigenvalues and graphs. Lin Algebra Appl 226/228:593–616CrossRefMathSciNetGoogle Scholar
  41. 41.
    Haveliwala TH (2003) Topic-sensitive PageRank: a context-sensitive ranking algorithm for Web search. IEEE Trans Knowl Data Eng 15:784–796CrossRefGoogle Scholar
  42. 42.
    Hoffman AJ (1970) On eigenvalues and colorings of graphs. In: Graph theory and its applications. (Proceedings of an advanced seminar, mathematical research center, University of Wisconsin, Madison, WI, 1969). Academic, New York, pp 79–91Google Scholar
  43. 43.
    Hoffman AJ, Wielandt H (1953) The variation of the spectrum of a normal matrix. Duke Math J 29:37–39CrossRefMathSciNetGoogle Scholar
  44. 44.
    Hoory S, Linial N, Wigderson A (2006) Expander graphs and their applications. Bull AMS 43:439–561MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, CambridgeMATHGoogle Scholar
  46. 46.
    Kannan R, Vempala S, Vetta A (2004) On clusterigs: good, bad and spectral. J ACM 51:497–515MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Kelner JA (2004) Spectral partitioning, eigenvalue bounds, and circle packings for graphs of bounded genus. In: Proceedings of the symposium on the theory of Computing (STOC)Google Scholar
  48. 48.
    Kendall MG (1955) Further contributions to the theory of paired comparisons. Biometrics 11:43–62CrossRefMathSciNetGoogle Scholar
  49. 49.
    Kirchhoff G (1847) Über die Auflösung der Gleichungen auf welche man bei der Untersuchung der Linearen Vertheilung galvanischer Ströme geführt wird. Ann Phys Chem 72:497–508CrossRefGoogle Scholar
  50. 50.
    Kirkland SJ, Molitierno JJ, Neumann M, Shader BL (2002) On graphs with equal algebraic and vertex connectivity. Lin Algebra Appl 341:45–56MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Krivelevich M, Sudakov B (2006) Pseudo-random graphs. In: More sets, graphs and numbers. Bolyai Society Mathematical Studies, vol 15, pp 199–262Google Scholar
  52. 52.
    Lipton RJ, Tarjan RE (1979) A separator theorem for planar graphs. SIAM J Appl Math 36:177–189MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Mihail M (1989) Conductance and convergence of Markov chains – a combinatorial treatment of expandes. In: Proceedings of the 30th annual symposium on foundations of computer science. IEEE Computer Society, Washington, DC, pp 526–531Google Scholar
  54. 54.
    Mohar B (1989) Isoperimetric numbers of graphs. J Combin Theory B 47:274–291MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Mohar B (1997) Some applications of Laplace eigenvalues of graphs. In: Hahn G, Sabidussi G (eds) Graph symmetry. Kluwer, Dordrecht, pp 225–275Google Scholar
  56. 56.
    Monien B, Preis R (2001) Upper bounds on the bisection width of 3 and 4-regular graphs. In: Pultr A, Sgall J, Kolman P (eds) Mathematical foundations of computer science, vol 2136. Lecture Notes in Computer Science. Springer, pp 524–536Google Scholar
  57. 57.
    Nikiforov V (2001) Some inequalities for the largest eigenvalue of a graph. Combinator Probab Comput 11:179–189MathSciNetGoogle Scholar
  58. 58.
    Spielman D, Teng SH (1996) Spectral partitioning works: planar graphs and finite element meshes. In: Proceedings of the 37th annual symposium on foundations of computer science, pp 96–106Google Scholar
  59. 59.
    Spielman D, Teng SH (2007) Spectral partitioning works. Lin Algebra Appl 421:284–305MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Tanner RM (1984) Explicit construction of concentrators from generalized N-gons. SIAM J Algebra Discr 5:287–294MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    van Dam E, Haemers W (2003) Which graphs are determined by their spectrum? Lin Algebra Appl 373:241–272MATHCrossRefGoogle Scholar
  62. 62.
    van Dam E, Haemers W (2009) Developments on spectral characterization of graphs. Discrete Math 309:576–586MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    van Dam E, Jamakovic A, Kooij RE, Van Mieghem P (2006) Robustness of networks against viruses: the role of spectral radius. In: Proceedings of the 13th annual symposium of the IEEE/CVT Benelux, Liége, Belgium, pp 35–38Google Scholar
  64. 64.
    van Dam E, Kooij RE (2007) The minimal spectral radius of graphs with give diameter. Lin Algebra Appl 423:408–419MATHCrossRefGoogle Scholar
  65. 65.
    Wang Y, Chakrabarti D, Wang C, Faloutsos C (2003) Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of the symposium on reliable distributed computing, Florence, Italy, pp 25–34Google Scholar
  66. 66.
    Wei TH (1952) The algebraic foundations of ranking theory. Cambridge University Press, LondonGoogle Scholar
  67. 67.
    West DB (2001) Introduction to graph theory, 2nd edn. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  68. 68.
    Whitney H (1932) Congruent graphs and the connectivity of graphs. Am J Math 54:150–168CrossRefMathSciNetGoogle Scholar
  69. 69.
    Wilf H (1967) The eigenvalues of a graph and its chromatic number. J Lond Math Soc 42:330–332MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations