Reconstruction Problems for Graphs, Krawtchouk Polynomials, and Diophantine Equations

  • Thomas Stoll


We give an overview about some reconstruction problems in graph theory, which are intimately related to integer roots of Krawtchouk polynomials. In this context, Tichy and the author recently showed that a binary Diophantine equation for Krawtchouk polynomials only has finitely many integral solution. Here, this result is extended. By using a method of Krasikov, we decide the general finiteness problem for binary Krawtchouk polynomials within certain ranges of the parameters.


Krawtchouk polynomials Graph reconstruction Diophantine equations Discrete orthogonal polynomials Laguerre inequality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is a recipient of an APART-fellowship of the Austrian Academy of Sciences at the University of Waterloo, Canada. He also wishes to express his gratitude to I. Krasikov for several helpful discussions.


  1. 1.
    Bilu Y, Tichy RF (2000) The Diophantine equation f(x) = g(y). Acta Arith 95:261–288MATHMathSciNetGoogle Scholar
  2. 2.
    Bondy JA (1991) A graph reconstruction manual. In: Keedwell AD (ed) Surveys in combinatorics. LMS-Lecture Note Series, vol 166. Cambridge University Press, Cambridge, pp 221–252Google Scholar
  3. 3.
    Dujella A, Tichy RF (2001) Diophantine equations for second-order recursive sequences of polynomials. Q J Math 52:161–169MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ellingham MN (1996) Vertex-switching reconstruction and folded cubes. J Combin Theory B 66:361–364MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ellingham MN, Royle GF (1992) Vertex-switching reconstruction of subgraph numbers and triangle-free graphs. J Combin Theory B 54:167–177MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Krasikov I (1994) Applications of balance equations to vertex switching reconstruction. J Graph Theory 18:217–225.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Krasikov I (1996) Degree conditions for vertex switching reconstruction. Discrete Math 160:273–278MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Krasikov I (2001) Nonnegative quadratic forms and bounds on orthogonal polynomials. J Approx Theory 111:31–49MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Krasikov I (2003) Discrete analogues of the Laguerre inequality. Anal Appl (Singap) 1:189–197MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Krasikov I, Litsyn S (1996) On integral zeros of Krawtchouk polynomials. J Combin Theory A 74:71–99MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Krasikov I, Litsyn S (2001) Survey of binary Krawtchouk polynomials, Codes and association schemes. (Piscataway, NJ, 1999), DIMACS Ser Discrete Math Theor Comput Sci 56:199–211. American Mathematical Society, Providence, RIGoogle Scholar
  12. 12.
    Krasikov I, Roditty Y (1992) Switching reconstruction and Diophantine equations. J Combin Theory B 54:189–195CrossRefMathSciNetGoogle Scholar
  13. 13.
    Krasikov I, Roditty Y (1994) More on vertex-switching reconstruction. J Combin Theory B 60:40–55MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Koekoek R, Swarttouw RF (1998) The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Report 98-17, Delft, NetherlandsGoogle Scholar
  15. 15.
    Levenshtein V (1995) Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces. IEEE Trans Inf Theory 41:1303–1321MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Siegel CL (1929) Über einige Anwendungen Diophantischer Approximationen. Abh Preuss Akad Wiss Math Phys Kl 1:209–266Google Scholar
  17. 17.
    Stanley RP (1985) Reconstruction from vertex-switching. J Combin Theory B 38:132–138MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Stoll T (2008) Complete decomposition of Dickson-type recursive polynomials and related Diophantine equations. J Number Theory 128:1157–1181MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Stoll T (2008) Decomposition of perturbed Chebyshev polynomials. J Comput Appl Math 214:356–370MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Stoll T, Tichy RF (2003) Diophantine equations for continuous classical orthogonal polynomials. Indagat Math 14:263–274MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Stoll T, Tichy RF (2005) Diophantine equations involving general Meixner and Krawtchouk polynomials. Quaest Math 28:105–115MATHMathSciNetGoogle Scholar
  22. 22.
    Szegő G (1975) Orthogonal polynomials, vol. 23, 4th edn. American Mathematical Society Colloquium Publications, Providence, RIGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Mathematics, School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations