A Brief Introduction to Complex Networks and Their Analysis

Chapter

Abstract

In this chapter we present a brief introduction to complex networks and their analysis. We review important network classes and properties thereof as well as general analysis methods. The focus of this chapter is on the structural analysis of networks, however, information-theoretic methods are also discussed.

Keywords

Complex networks Centrality measures Comparative network analysis Module detection Information-theoretic measures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

I would like to thank Matthias Dehmer for fruitful discussions.

References

  1. 1.
    Adamic L, Huberman B (2000) Power-law distribution of the world wide web. Science 287:2115CrossRefGoogle Scholar
  2. 2.
    Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bakir GH, Hofmann T, Schölkopf B, Smola AJ, Taskar B, Vishwanathan SVN (eds) (2007) Predicting structured data. MIT Press, Cambridge, MAGoogle Scholar
  4. 4.
    Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 206: 509–512MathSciNetGoogle Scholar
  5. 5.
    Bavelas A (1948) A mathematical model for group structure. Hum Organ 7:16–30Google Scholar
  6. 6.
    Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22: 725–730CrossRefGoogle Scholar
  7. 7.
    Bellman R (1957) Dynamic programming. International Series. Princeton University Press, Princeton, NJMATHGoogle Scholar
  8. 8.
    Bonchev D (1979) Information indices for atoms and molecules. Match 7:65–113Google Scholar
  9. 9.
    Bonchev D (1983) Information theoretic indices for characterization of chemical structures. Research Studies Press, ChichesterGoogle Scholar
  10. 10.
    Bonchev D (1995) Kolmogorov’s information, shannon’s entropy, and topological complexity of molecules. Bulg Chem Commun 28:567–582Google Scholar
  11. 11.
    Bonchev D (2003) Complexity in chemistry. Introduction and fundamentals. Taylor & Francis, London (Philadelphia, PA)Google Scholar
  12. 12.
    Bonchev D, Rouvray DH (2005) Complexity in chemistry, biology, and ecology. Mathematical and computational chemistry. Springer, BerlinMATHCrossRefGoogle Scholar
  13. 13.
    Bonchev D, Trinajstić N (1977) Information theory, distance matrix and molecular branching. J Chem Phys 67:4517–4533CrossRefGoogle Scholar
  14. 14.
    Bonchev D, Balaban AT, Mekenyan OG (1980) Generalization of the graph center concept, and derived topological centric indexes. J Chem Inf Comput Sci 20(2):106–113Google Scholar
  15. 15.
    Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2:113–120CrossRefGoogle Scholar
  16. 16.
    Bornholdt S, Schuster HG (2003) Handbook of graphs and networks: from the genome to the internet. Wiley, New York, NYMATHGoogle Scholar
  17. 17.
    Bornholdt S, Schuster HG (eds) (2003) Handbook of graphs and networks: from the genome to the internet. Wiley, New York, NYMATHGoogle Scholar
  18. 18.
    Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177MATHCrossRefGoogle Scholar
  19. 19.
    Brandes U, Erlebach T (2005) Network analysis. Lecture notes in computer science. Springer, BerlinMATHCrossRefGoogle Scholar
  20. 20.
    Brandstädt A, Le VB, Sprinrand JP (1999) Graph classes. A survey. SIAM Monographs on Discrete Mathematics and ApplicationsMATHGoogle Scholar
  21. 21.
    Brinkmeier M, Schank T (2005) Network statistics. In Brandes U, Erlebach T (eds) Network analysis. Lecture notes in computer science. Springer, Berlin, pp 293–317CrossRefGoogle Scholar
  22. 22.
    Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J (2000) Graph structure in the web: experiments and models. In: Proceedings of the 9th WWW conference, AmsterdamGoogle Scholar
  23. 23.
    Buckley F, Harary F (1990) Distance in graphs. Addison-Wesley, Reading, MAMATHGoogle Scholar
  24. 24.
    Bunke H (1983) What is the distance between graphs? Bull EATCS 20:35–39Google Scholar
  25. 25.
    Bunke H (1997) On a relation between graph edit distance and maximum common subgraph. Pattern Recognit Lett 18(9):689–694MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bunke H (1998) A graph distance metric based on the maximum common subgraph. Pattern Recognit Lett 19(3):255–259MATHCrossRefGoogle Scholar
  27. 27.
    Bunke H, Allermann G (1983) A metric on graphs for structural pattern recognition. In: Schussler HW (ed) Proceedings of 2nd European signal processing conference EUSIPCO, pp 257–260Google Scholar
  28. 28.
    Bunke H, Neuhaus M (2007) Graph matching. Exact and error-tolerant methods and the automatic learning of edit costs. In: Cook D, Holder LB (eds) Mining graph data. Wiley, New York, NY, pp 17–32Google Scholar
  29. 29.
    Carrière SJ, Kazman R (1997) Webquery: searching and visualizing the web through connectivity. Computer Networks and ISDN Systems 29(8–13):1257–1267CrossRefGoogle Scholar
  30. 30.
    Cayley A (1857) On the theory of analytic forms called trees. Philos Mag 13:19–30Google Scholar
  31. 31.
    Cayley A (1875) On the analytical forms called trees, with application to the theory of chemical combinatorics. Report of the British Association for the Advancement of Science, pp 257–305Google Scholar
  32. 32.
    Chowdhury D, Stauffer D (2000) Principles of equilibrium statistical mechanics. Wiley-VCH, WeinheimMATHCrossRefGoogle Scholar
  33. 33.
    Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111CrossRefGoogle Scholar
  34. 34.
    Claussen JC (2007) Characterization of networks by the offdiagonal complexity. Physica A 365–373:321–354Google Scholar
  35. 35.
    Claussen JC (2007) Offdiagonal complexity: a computationally quick network complexity measure – application to protein networks and cell division. In: Deutsch A, Bravo de la Parra R et al (eds) Mathematical modeling of biological systems, vol II. Birkhäuser, Boston, MA, pp 303–311Google Scholar
  36. 36.
    Cook D, Holder LB (2007) Mining graph data. Wiley, New York, NYMATHGoogle Scholar
  37. 37.
    Cormen T, Leiserson CE, Rivest RL, Leiserson C, Rivest R (2001) Introduction to algorithms. MIT Press, Cambridge, MAMATHGoogle Scholar
  38. 38.
    Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press, CambridgeGoogle Scholar
  39. 39.
    Dehmer M (2006) Strukturelle Analyse web-basierter Dokumente. Multimedia und Telekooperation. Deutscher Universitäts Verlag, WiesbadenGoogle Scholar
  40. 40.
    Dehmer M (2008) A novel method for measuring the structural information content of networks. Cybern Syst 39:825–842CrossRefGoogle Scholar
  41. 41.
    Dehmer M, Emmert-Streib F (2008) Structural information content of chemical networks. Zeitschrift für Naturforschung, Part A 63a:155–159Google Scholar
  42. 42.
    Deo N, Gupta P (2001) World wide web: a graph-theoretic perspective. Technical report, Department of Computer Science, University of Central FloridaGoogle Scholar
  43. 43.
    Dickinson PJ, Bunke H, Dadej A, Kraetzl M (2004) Matching graphs with unique node labels. Pattern Anal Appl 7:243–266MathSciNetGoogle Scholar
  44. 44.
    Diestel R (2000) Graph theory. Springer, BerlinGoogle Scholar
  45. 45.
    Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E, 72:027104CrossRefGoogle Scholar
  46. 46.
    Emmert-Streib F (2007) The chronic fatigue syndrome: a comparative pathway analysis. J Comput Biol 14(7):961–972MathSciNetCrossRefGoogle Scholar
  47. 47.
    Emmert-Streib F, Chen L, Storey J (2007) Functional annotation of genes in Saccharomyces cerevisiae based on joint betweenness. arXiv:0709.3291Google Scholar
  48. 48.
    Emmert-Streib F, Dehmer M (2007) Global information processing in gene networks: fault tolerance. In: Proceedings of the bio-inspired models of network, information, and computing systems, Bionetics 2007, art. no. 4610138, pp 326–329Google Scholar
  49. 49.
    Emmert-Streib F, Dehmer M, Kilian J (2005) Classification of large graphs by a local tree decomposition. In: Arabnia HR, Scime A (eds) Proceedings of DMIN’05, international conference on data mining, Las Vegas, June 20–23, pp 200–207Google Scholar
  50. 50.
    Emmert-Streib F, Dehmer M (2007) Topolocial mappings between graphs, trees and generalized trees. Appl Math Comput 186(2):1326–1333MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Emmert-Streib F, Dehmer M (eds) (2008) Analysis of microarray data: a network based approach. Wiley-VCH, WeinheimGoogle Scholar
  52. 52.
    Emmert-Streib F, Dehmer M (2005) Robustness in scale-free networks: comparing directed and undirected networks. Int J Mod Phys C 19(5):717–726CrossRefGoogle Scholar
  53. 53.
    Emmert-Streib F, Mushegian A (2007) A topological algorithm for identification of structural domains of proteins. BMC Bioinformatics 8:237CrossRefGoogle Scholar
  54. 54.
    Erdös P, Rényi A (1959) On random graphs. Publicationes Mathematicae 6:290–297MATHGoogle Scholar
  55. 55.
    Erdös P, Rényi A (1960) On the evolution of random graphs. Publications of Mathematical Institute of the Hungarian Academy of Sciences 5:17–61MATHGoogle Scholar
  56. 56.
    Euler L (1736) Solutio problematis ad geometriam situs pertinentis. Comentarii Academiae Scientiarum Imperialis Petropolitanae 8:128–140Google Scholar
  57. 57.
    Even S (1979) Algorithms. Computer Science Press, Potomac, MDMATHGoogle Scholar
  58. 58.
    Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40: 35–41CrossRefGoogle Scholar
  59. 59.
    Freeman LC (1979) Centrality in social networks: conceptual clarification. Soc Networks 1:215–239CrossRefGoogle Scholar
  60. 60.
    Fujii JI, Yuki S (1997) Entropy and coding for graphs. Int J Math Stat Sci 6(1):63–77MATHMathSciNetGoogle Scholar
  61. 61.
    Gagneur J, Krause R, Bouwmeester T, Casari G (2004) Modular decomposition of protein–protein interaction networks. Genome Biol 5:R57CrossRefGoogle Scholar
  62. 62.
    Gärtner T, Flach PA, Wrobel S (2003) On graph kernels: hardness results and efficient alternatives. In: COLT, pp 129–143Google Scholar
  63. 63.
    Gernert D (1979) Measuring the similarity of complex structures by means of graph grammars. Bull EATCS 7:3–9MathSciNetGoogle Scholar
  64. 64.
    Gernert D (1981) Graph grammars which generate graphs with specified properties. Bull EATCS 13:13–20Google Scholar
  65. 65.
    Gleiser PM, Danon L (2003) Community structure in jazz. Advances in complex systems 6(4):565–574CrossRefGoogle Scholar
  66. 66.
    Hage P, Harary F (1995) Eccentricity and centrality in networks. Soc Networks 17:57–63CrossRefGoogle Scholar
  67. 67.
    Halin R (1989) Graphentheorie. Akademie Verlag, BerlinMATHGoogle Scholar
  68. 68.
    Harary F (1959) Status and contrastatus. Sociometry 22:23–43MathSciNetCrossRefGoogle Scholar
  69. 69.
    Harary F (1965) Structural models. An introduction to the theory of directed graphs. Wiley, NYMATHGoogle Scholar
  70. 70.
    Harary F (1967) Graph theory and theoretical physics. Academic, New York, NYMATHGoogle Scholar
  71. 71.
    Harary F (1969) Graph theory. Addison-Wesley, Reading, MAGoogle Scholar
  72. 72.
    Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning. Springer, BerlinMATHGoogle Scholar
  73. 73.
    Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern kernels for predictive graph mining. In: Proceedings of the 2004 ACM SIGKDD international conference on knowledge discovery and data mining, pp 158–167Google Scholar
  74. 74.
    Hsu H-P, Mehra V, Grassberger P (2003) Structure optimization in an off-lattice protein model. Phys Rev E 68(3):037703CrossRefGoogle Scholar
  75. 75.
    Kaden F (1982) Graphmetriken und Distanzgraphen. ZKI-Informationen, Akademie der Wissenschaften DDR 2(82):1–63Google Scholar
  76. 76.
    Kaden F (1983) Halbgeordnete Graphmengen und Graphmetriken. In: Proceedings of the conference graphs, hypergraphs, and applications DDR, pp 92–95Google Scholar
  77. 77.
    Kaden F (1986) Graphmetriken und Isometrieprobleme zugehöriger Distanzgraphen. ZKI-Informationen, Akademie der Wissenschaften DDR, pp 1–100MATHGoogle Scholar
  78. 78.
    Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467MathSciNetCrossRefGoogle Scholar
  79. 79.
    Kieffer J, Yang E (1997) Ergodic behavior of graph entropy. Electronic Research Announcements of the American Mathematical Society 3:11–16MATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    Kondor RI, Lafferty J (2002) Diffusion kernels on graphs and other discrete input spaces. In: Machine learning: Proceedings of the 19th international conference, Morgan Kaufmann, San Mateo, CAGoogle Scholar
  81. 81.
    König D (1936) Theorie der endlichen und unendlichen Graphen. Chelsea, New York, NYGoogle Scholar
  82. 82.
    Körner J (1973) Coding of an information source having ambiguous alphabet and the entropy of graphs. Transactions of the 6th Prague conference on information theory, pp 411–425Google Scholar
  83. 83.
    Koschützki D, Lehmann KA, Peters L, Richter S, Tenfelde-Podehl D, Zlotkowski O (2005) Clustering. In: Brandes U, Erlebach T (eds) Centrality indices. Lecture notes in computer science. Springer, Berlin, pp 16–61Google Scholar
  84. 84.
    Kullback S (1959) Information theory and statistics. Wiley, New York, NYMATHGoogle Scholar
  85. 85.
    Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86MATHMathSciNetCrossRefGoogle Scholar
  86. 86.
    Laubenbacher RC (2007) Modeling and simulation of biological networks. In: Proceedings of symposia in applied mathematics. American Mathematical Society, Providence, RIMATHGoogle Scholar
  87. 87.
    Li M, Vitányi P (1997) An introduction to Kolmogorov complexity and its applications. Springer, BerlinMATHGoogle Scholar
  88. 88.
    Mason O, Verwoerd M (2007) Graph theory and networks in biology. IET Syst Biol 1(2): 89–119CrossRefGoogle Scholar
  89. 89.
    Mehler A (2006) In search of a bridge between network analysis in computational linguistics and computational biology – a conceptual note. In: Proceedings of the 2006 international conference on bioinformatics & computational biology (BIOCOMP’06), 2006, Las Vegas, Nevada, USA, pp 496–500Google Scholar
  90. 90.
    Mehler A, Dehmer M, Gleim R (2005) Towards logical hypertext structure. a graph-theoretic perspective. In: Proceedings of I2CS’04. Lecture notes. Springer, Berlin, pp 136–150Google Scholar
  91. 91.
    Messmer BT, Bunke H (1998) A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Trans Pattern Anal Mach Intell 20(5):493–504CrossRefGoogle Scholar
  92. 92.
    Mowshowitz A (1968) Entropy and the complexity of the graphs I: an index of the relative complexity of a graph. Bull Math Biophys 30:175–204MATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    Mowshowitz A (1968) Entropy and the complexity of graphs II: the information content of digraphs and infinite graphs. Bull Math Biophys 30:225–240MATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    Mowshowitz A (1968) Entropy and the complexity of graphs III: graphs with prescribed information content. Bull Math Biophys 30:387–414MATHMathSciNetCrossRefGoogle Scholar
  95. 95.
    Mowshowitz A (1968) Entropy and the complexity of graphs IV: entropy measures and graphical structure. Bull Math Biophys 30:533–546MATHMathSciNetCrossRefGoogle Scholar
  96. 96.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45: 167–256MATHMathSciNetCrossRefGoogle Scholar
  97. 97.
    Newman MEJ, Girvan M (2004) Finding and evaluating community structures in networks. Phys Rev E 69:026113CrossRefGoogle Scholar
  98. 98.
    Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582CrossRefGoogle Scholar
  99. 99.
    Pearl J (1998) Probabilistic reasoning in intelligent systems. Morgan Kaufmann, Los Altos, CAGoogle Scholar
  100. 100.
    Rashewsky N (1955) Life, information theory, and topology. Bull Math Biophys 17:229–235MathSciNetCrossRefGoogle Scholar
  101. 101.
    Roberts F (1989) Applications of combinatorics and graph theory to the biological and social sciences series. IMA volumes in mathematics and its applications. Springer, BerlinGoogle Scholar
  102. 102.
    Rosvall M, Bergstrom CT (2007) An information-theoretic framework for resolving community structure in complex networks. In: Proc Natl Acad Sci USA 104(18):7327–31CrossRefGoogle Scholar
  103. 103.
    Sabidussi G (1966) The centrality index of a graph. Psychometrika 31:581–603MATHMathSciNetCrossRefGoogle Scholar
  104. 104.
    Scott F (2001) Social network analysis. Sage, Beverly Hills, CAGoogle Scholar
  105. 105.
    Shannon CE, Weaver W (1997) The mathematical theory of communication. University of Illinois Press, Champaign, ILGoogle Scholar
  106. 106.
    Simonyi G (2001) Perfect graphs and graph entropy. An updated survey. In: Ramirez-Alfonsin J, Reed B (eds) Perfect graphs. Wiley, New York, NY, pp 293–328Google Scholar
  107. 107.
    Skorobogatov VA, Dobrynin AA (1988) Metrical analysis of graphs. MATCH 23:105–155MATHMathSciNetGoogle Scholar
  108. 108.
    Sobik F (1982) Graphmetriken und Klassifikation strukturierter Objekte. ZKI-Informationen, Akademie der Wissenschaften DDR 2(82):63–122Google Scholar
  109. 109.
    Sobik F (1986) Modellierung von Vergleichsprozessen auf der Grundlage von Ähnlichkeitsmaßen für Graphen. ZKI-Informationen, Akademie der Wissenschaften DDR 4:104–144Google Scholar
  110. 110.
    Solé RV, Valverde S (2004) Information theory of complex networks: on evolution and architectural constraints. In: Lecture notes in physics, vol 650, pp 189–207Google Scholar
  111. 111.
    Temkin O, Zeigarnik AV, Bonchev D (1996) Chemical reaction networks. A graph-theoretical approach. CRC Press, West Palm Beach, FLGoogle Scholar
  112. 112.
    Trucco E (1956) A note on the information content of graphs. Bull Math Biol 18(2):129–135MathSciNetGoogle Scholar
  113. 113.
    Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23(1):31–42MathSciNetCrossRefGoogle Scholar
  114. 114.
    Wasserman S, Faust K (1994) Social network analysis: methods and applications. Structural analysis in the social sciences. Cambridge University Press, CambridgeGoogle Scholar
  115. 115.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393: 440–442CrossRefGoogle Scholar
  116. 116.
    Zachary W (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473Google Scholar
  117. 117.
    Zelinka B (1975) On a certain distance between isomorphism classes of graphs. Časopis pro p̆est. Mathematiky 100:371–373MATHMathSciNetGoogle Scholar
  118. 118.
    Zhang K, Statman R, Shasha D (1992) On the editing distance between unordered labeled trees. Inform Process Lett 42(3):133–139MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Computational Biology and Machine Learning, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical SciencesQueen’s University BelfastBelfastUK

Personalised recommendations