Skip to main content

Extensions of the Scan Statistic for the Detection and Inference of SpatialClusters

  • Chapter
  • First Online:

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

Naus’s early 1965 paper [Naus (1965)] on spatial scan statistics paved the way for a considerable amount of research on geographic-based statistical analysis, inspiring intensive work in the most diverse contexts and applications, including epidemiology, syndromic surveillance, criminality and environmental sciences. Following one line of work, several methods for the detection of irregularly shaped clusters were developed. New tools were devised in order to account for the spatial mobility of individuals, the study of the spatial distribution of individuals according to their survival times and multiple data streams from different sources of syndromic counts. Several algorithms explored the utilization of parametric models other than the Poisson or Bernoulli distributions, and also non-parametric and learning models. We expect that this strong trend of application-driven methodologies in spatial scan statistics should continue in the foreseeable future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aamodt, G., Samuelsen, S.O. and Skrondal, A. (2006). A simulation study of three methods for detecting disease clusters, International Journal of Health Geographics, 5, 15.

    Article  Google Scholar 

  2. Abrams, A.M., Kulldorff, M. and Kleinman, K. (2006). Empirical/ asymptotic p-values for Monte Carlo-based hypothesis testing: an application to cluster detection using the scan statistic, Advances in Disease Surveillance, 1, 1.

    Google Scholar 

  3. Agarwal, D., McGregor, A., Venkatasubramanian, S. and Zhu, Z (2006). Spatial Scan Statistics Approximations and Performance Study, Conference on Knowledge Discovery in Data Mining 2006.

    Google Scholar 

  4. Aldstadt, J. and Getis, A. (2006). Using AMOEBA to create a spatial weights matrix and identify spatial clusters, Geographical Analysis, 38, 327–343.

    Article  Google Scholar 

  5. Ali, M., Goovaerts, P., Nazia, N., Haq, M.Z., Yunus, M. and Emch, M. (2006). Application of Poisson kriging to the mapping of cholera and dysentery incidence in an endemic area of Bangladesh, International Journal of Health Geographics, 5, 45.

    Article  Google Scholar 

  6. Assunção, R.M., Costa, M.A., Tavares, A. and Neto, S.J.F. (2006). Fast detection of arbitrarily shaped disease clusters, Statistics in Medicine, 25, 723–742.

    Article  MathSciNet  Google Scholar 

  7. Balakrishnan, N. and Koutras, M.V. (2002). Runs and Scans with Applications, John Wiley & Sons, New York.

    MATH  Google Scholar 

  8. Beeker, E., Bauer, D.W. and Mohtashemi, M. (2007). Benchmark data generation from discrete event contact network models, Advances in Disease Surveillance, 4, 235.

    Google Scholar 

  9. Besag, J. and Newell, J. (1991). The detection of clusters in rare diseases, Journal of the Royal Statistical Society, A154, 143–155.

    Google Scholar 

  10. Boscoe, F.P. (2003). Visualization of the spatial scan statistic using nested circles, Health & Place, 9, 273–277.

    Article  Google Scholar 

  11. Brooker, S., Clarke, S., Njagi, J.K., Polack, S., Mugo, B., Estambale, B., Muchiri, E., Magnussen, P. and Cox, J. (2004). Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya, Tropical Medicine and International Health, 9, 757–766.

    Article  Google Scholar 

  12. Buckeridge, D.L., Burkom, H., Campbell, M., Hogan, W.R. and Moore, A.W. (2005). Algorithms for rapid outbreak detection: a research synthesis, Journal of Biomedical Informatics, 38, 99–113.

    Article  Google Scholar 

  13. Cami, A., Wallstrom, G.L. and Hogan, W.R. (2007). Effect of work-related mobility in the simulation of aerosol anthrax releases with BARD, Advances in Disease Surveillance, 4, 239.

    Google Scholar 

  14. Chaput, E.K., Meek, J.I. and Heimer, R. (2002). Spatial analysis of human granulocytic ehrlichiosis near Lyme, Connecticut, Emerging Infectious Diseases, 8, 943–948.

    Google Scholar 

  15. Conley, J., Gahegan, M. and Macgill, J. (2005). A genetic approach to detecting clusters in point data sets, Geographical Analysis, 37, 286–314.

    Article  Google Scholar 

  16. Cook, A.J., Gold, D.R. and Li, Y. (2007). Spatial cluster detection for censored outcome data, Biometrics, 63, 540–549.

    Article  MATH  MathSciNet  Google Scholar 

  17. Costa, M.A., Kulldorff, M. and Assunção, R.M. (2007). A space time permutation scan statistic with irregular shape for disease outbreak detection, Advances in Disease Surveillance, 4, 243.

    Google Scholar 

  18. Croner, C.M. and De Cola, L. (2001). Visualization of Disease Surveillance Data with Geostatistics, Work Session on Methodological Issues Involving Integration of Statistics and Geography.

    Google Scholar 

  19. Dematteï, C., Molinari, N. and Daurès, J.P. (2007). Arbitrarily shaped multiple spatial cluster detection for case event data, Computational Statistics & Data Analysis, 51, 3931–3945.

    Article  MATH  MathSciNet  Google Scholar 

  20. Duczmal, L. and Assunção, R. (2004). A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters, Computational Statistics & Data Analysis, 45, 269–286.

    Article  MATH  MathSciNet  Google Scholar 

  21. Duczmal, L. and Buckeridge, D.L. (2006). A workflow spatial scan statistic, Statistics in Medicine, 25, 743–754.

    Article  MathSciNet  Google Scholar 

  22. Duczmal, L., Kulldorff, M. and Huang, L. (2006). Evaluation of spatial scan statistics for irregularly shaped disease clusters, Journal of Computational & Graphical Statistics, 15, 428–442.

    Article  MathSciNet  Google Scholar 

  23. Duczmal, L., Cançado, A.L.F. and Takahashi, R.H.C. (2008). Geographic delineation of disease clusters through multi-objective optimization, Journal of Computational & Graphical Statistics, 17, 243–262.

    Article  Google Scholar 

  24. Duczmal, L., Cançado, A.L.F., Takahashi, R.H.C. and Bessegato, L.F. (2007). A genetic algorithm for irregularly shaped spatial scan statistics, Computational Statistics & Data Analysis, 52, 43–52.

    Article  MATH  MathSciNet  Google Scholar 

  25. Duczmal, L., Moreira, G.J.P., Ferreira, S.J. and Takahashi, R.H.C. (2007). Dual graph spatial cluster detection for syndromic surveillance in networks, Advances in Disease Surveillance, 4, 88.

    Google Scholar 

  26. Dunchin, J.S. (2003). Epidemiological response to syndromic surveillance signals, Journal of Urban Health: Bulletin of the New York Academy of Medicine, 80, 115–116.

    Article  Google Scholar 

  27. Dunyak, J., Mohtashemi, M. and Mandl, K. (2006). Temporal-spatial surveillance techniques from non-homogenous random geometric graphs, Advances in Disease Surveillance, 1, 23.

    Google Scholar 

  28. Durand, M. and Wilson, G. (2006). Spatial analysis of respiratory disease on an urbanized geothermal field, Environmental Research, 101, 238–245.

    Article  Google Scholar 

  29. Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses, Annals of Mathematical Statistics, 28, 181–187.

    Article  MATH  MathSciNet  Google Scholar 

  30. Elliott, P., Martuzzi, M. and Shaddick, G. (1995). Spatial statistical methods in environmental epidemiology: a critique, Statistical Methods in Medical Research, 4, 137–159.

    Article  Google Scholar 

  31. Fukuda, Y., Umezaki, M., Nakamura, K. and Takano, T. (2005). Variations in societal characteristics of spatial disease clusters: examples of colon, lung and breast cancer in Japan, International Journal of Health Geographics, 4, 16.

    Article  Google Scholar 

  32. Gardner, B.R., Strickland, M.J. and Correa, A. (2007). Application of the automated spatial surveillance program to birth defects surveillance data, Birth Defects Research Part A: Clinical and Molecular Teratology, 79, 559–564.

    Article  Google Scholar 

  33. Gaudart, J., Poudiougou, B., Ranque, S. and Doumbo, O. (2005). Oblique decision trees for spatial pattern detection: optimal algorithm and application to malaria risk, BMC Medical Research Methodology, 5, 22.

    Article  Google Scholar 

  34. Glaz, J. and Zhang, Z. (2006). Maximum scan score-type statistics, Statistics & Probability Letters, 76, 1316–1322.

    Article  MATH  MathSciNet  Google Scholar 

  35. Glaz, J., Naus, J. and Wallenstein, S. (2001). Scan Statistics, in Springer Series in Statistics, Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  36. Goovaerts, P., Jacquez, G.M. and Greiling, D. (2005). Exploring scale-dependent correlations between cancer mortality rates using factorial kriging and population-weighted semivariograms, Geographical Analysis, 37, 152–182.

    Article  Google Scholar 

  37. Goranson, C., Konty, K., Lu, J. and Mostashari, F. (2006). Visualization of syndromic surveillance using GIS, Advances in Disease Surveillance, 1, 26.

    Google Scholar 

  38. Grannis, S., Egg, J., Cassa, C.A., Olson, K., Mandl, K. and Overhage, J.M. (2007). Evaluating the performance of a spatial scan statistic using simulated outbreak characteristics, Advances in Disease Surveillance, 2, 200.

    Google Scholar 

  39. Gunn, J., Pendarvis, J. and Barry, A. (2006). Syndromic surveillance and zip code data: the role of zip codes in understanding populations, Advances in Disease Surveillance, 1, 29.

    Google Scholar 

  40. Haiman, G. and Preda, C. (2002). A new method for estimating the distribution of scan statistics for a two-dimensional poisson process, Methodology and computing in Applied Probability, 4(4), 393–407.

    Article  MATH  MathSciNet  Google Scholar 

  41. Hanson, C.E. and Wieczorek, W.F. (2002). Alcohol mortality: a comparison of spatial clustering methods, Social Science & Medicine, 55, 791–802.

    Article  Google Scholar 

  42. Heffernan, R., Mostashari, F., Das, D., Karpati, A., Kulldorff, M. and Weiss, D. (2004). Syndromic surveillance in public health practice, New York City, Emerging Infectious Diseases, 10, 858–864.

    Google Scholar 

  43. Huang, L., Kulldorff, M. and Gregorio, D. (2007). A spatial scan statistic for survival data, Biometrics, 63, 109–118.

    Article  MATH  MathSciNet  Google Scholar 

  44. Huang, L., Pickle, L.W., Stinchcomb, D. and Feuer, E.J. (2007). Detection of spatial clusters: application to cancer survival as a continuous outcome, Epidemiology, 18, 73–87.

    Article  Google Scholar 

  45. Iyengar, V.S. (2004). Space-Time Clusters with Flexible Shapes, IBM Research Report RC23398 (W0408-068).

    Google Scholar 

  46. Jacquez, G.M., Kaufmann, A., Meliker, J., Goovaerts, P., AvRuskin, G. and Nriagu, J. (2005). Global, local and focused geographic clustering for case-control data with residential histories, Environmental Health: A Global Access Science Source, 4, 4.

    Article  Google Scholar 

  47. Jacquez, G.M., Meliker, J., AvRuskin, G., Goovaerts, P., Kaufmann, A., Wilson, M. and Nriagu, J. (2006). Case-control geographic clustering for residential histories accounting for risk factors and covariates, International Journal of Health Geographics, 5, 32.

    Article  Google Scholar 

  48. Jacquez, G.M., Kaufmann, A. and Goovaerts, P. (2007). Boundaries, links and clusters: a new paradigm in spatial analysis? Environmental and Ecological Statistics (Published online).

    Google Scholar 

  49. Johnson, G.D., Eidson, M., Schmit, K., Ellis, A. and Kulldorff, M. (2005). Geographic prediction of human onset of West Nile virus using dead crow clusters: an evaluation of year 2002 data in New York State, American Journal of Epidemiology, 163, 171–180.

    Article  Google Scholar 

  50. Kulldorff, M. (1997). A spatial scan statistic, Communications in Statistics: Theory and Methods, 26(6), 1481–1496.

    Article  MATH  MathSciNet  Google Scholar 

  51. Kulldorff, M. (1999). Spatial Scan Statistics: Models, Calculations, and Applications, in Scan Statistics and Applications (Ed., N. Balakrishnan and J. Glaz), pp. 303–322, Birkhäuser.

    Google Scholar 

  52. Kulldorff, M. (2001). Prospective time periodic geographical disease surveillance using a scan statistic, Journal of the Royal Statistical Society, 164(1), 61–72.

    Article  MATH  MathSciNet  Google Scholar 

  53. Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: detection and inference, Statistics in Medicine, 14, 799–810.

    Article  Google Scholar 

  54. Kulldorff, M., Feuer, E.J., Miller, B.A. and Freedman, L.S. (1997). Breast cancer clusters in the northeast United States: a geographic analysis, American Journal of Epidemiology, 146, 161–170.

    Google Scholar 

  55. Kulldorff, M., Athas, W.F., Feuer, E.J., Miller, B.A. and Key, C.R. (1998). Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico, American Journal of Public Health, 88, 1377–1380.

    Article  Google Scholar 

  56. Kulldorff, M., Tango, T. and Park, P.J. (2003). Power comparisons for disease clustering tests, Computational Statistics & Data Analysis, 42, 665–684.

    Article  MATH  MathSciNet  Google Scholar 

  57. Kulldorff, M., Heffernan, R., Hartman, J., Assunção, R.M. and Mostashari, F. (2005). A space-time permutation scan statistic for disease outbreak detection, PLoS Medicine, 2(3), 216–224.

    Article  Google Scholar 

  58. Kulldorff, M., Huang, L., Pickle, L. and Duczmal, L. (2006). An elliptic spatial scan statistic, Statistics in Medicine, 25, 3929–3943.

    Article  MathSciNet  Google Scholar 

  59. Kulldorff, M., Mostashari, F., Duczmal, L., Yih, K., Kleinman, K. and Platt, R. (2007). Multivariate scan statistics for disease surveillance, Statistics in Medicine, 26, 1824–1833.

    Article  MathSciNet  Google Scholar 

  60. Lawson, A. (2001). In Large Scale: Surveillance. Statistical Methods in Spatial Epidemiology, ISBN: 0471975729 (Ed., A. Lawson), 197–206, Wiley.

    Google Scholar 

  61. Lawson, A., Biggeri, A., Böhning, D., Lesare, E., Viel, J.F. and Bertollini, R. (1999). Disease Mapping and Risk Assessment for Public Health, Wiley, London.

    MATH  Google Scholar 

  62. Lin, G. and Zhang, T. (2007). Loglinear residual tests of Moran’s I autocorrelation and their applications to Kentucky breast cancer data, Geographical Analysis, 39, 293–310.

    Article  Google Scholar 

  63. McNally, R.J.Q. and Colver, A.F. (2008). Space-time clustering analyses of occurrence of cerebral palsy in northern England for births 1991 to 2003, Annals of Epidemiology, 18, 108–112.

    Article  Google Scholar 

  64. Mather, F.J., Chen, V.W., Morgan, L.H., Correa, C.N., Shaffer, J.G., Srivastav, S.K., Rice, J.C., Blount, G., Swalm, C.M., Wu, X. and Scribner, R.A. (2006). Hierarchical modeling and other spatial analyses in prostate cancer incidence data, American Journal of Preventive Medicine, 30, 88–100.

    Article  Google Scholar 

  65. Meliker, J.R. and Jacquez, G.M. (2007). Space-time clustering of case-control data with residential histories: insights into empirical induction periods, Journal of Stochastic Environmental Research & Risk Assessment, 21, 625–634.

    Article  MATH  MathSciNet  Google Scholar 

  66. Modarres, R. and Patil, G.P. (2007). Hotspot detection with bivariate data, Journal of Statistical Planning and Inference, 137, 3643–3654.

    Article  MATH  MathSciNet  Google Scholar 

  67. Moore, D.A. and Carpenter, T.E. (1999). Spatial analytical methods and geographic information systems: use in health research and epidemiology, Epidemiologic Reviews, 21, 143–161.

    Google Scholar 

  68. Moore, G.E. (2005). A space-time cluster of adverse events associated with canine rabies vaccine, Vaccine, 23, 5557–5562.

    Article  Google Scholar 

  69. Moran, P.A.P. (1948). The interpretation of statistical maps, Journal of the Royal Statistical Society, 10, 243–251.

    MATH  Google Scholar 

  70. Moran, P.A.P. (1950). A test for the serial independence of residuals, Biometrika, 37, 178–181.

    MATH  MathSciNet  Google Scholar 

  71. Moura, F.R., Duczmal, L., Tavares, R. and Takahashi, R.H.C. (2007). Exploring multi-cluster structures with the multi-objective circular scan, Advances in Disease Surveillance, 2, 48.

    Google Scholar 

  72. Myers, W.L., Kurihara, K., Patil, G.P. and Vraney, R. (2006). Finding upper-level sets in cellular surface data using echelons and SaTScan, Environmental and Ecological Statistics, 13, 379–390.

    Article  MathSciNet  Google Scholar 

  73. Naus, J.I. (1965). Clustering of random points in two dimensions, Biometrika, 52, 263–267.

    Article  MATH  MathSciNet  Google Scholar 

  74. Neill, D.B. and Moore, A.W. (2003). A Fast Multi-Resolution Method for Detection of Significant Spatial Overdensities, Carnegie Mellon CSD Technical Report.

    Google Scholar 

  75. Neill, D.B. and Moore, A.W. (2004). A fast multi-resolution method for Detection of Significant Spatial Disease Clusters, Advances in Neural Information Processing Systems, 16, 651–658.

    Google Scholar 

  76. Neill, D.B., Moore, A.W., Pereira, F. and Mitchell, T. (2005). Detecting significant multidimensional spatial clusters, Advances in Neural Information Processing Systems, 17, 969–976.

    Google Scholar 

  77. Neill, D.B. and Moore, A.W. (2006). Methods for detecting spatial and spatio-temporal clusters, Handbook of Biosurveillance, Elsevier, Amsterdam, 243–254.

    Google Scholar 

  78. Neill, D.B., Moore, A.W. and Cooper, G.E. (2007). A multivariate Bayesian scan statistic, Advances in Disease Surveillance, 2, 60.

    Google Scholar 

  79. Neill, D.B. and Lingwall, J. (2007). A nonparametric scan statistic for multivariate disease surveillance, Advances in Disease Surveillance, 4, 106.

    Google Scholar 

  80. Neill, D.B. and Makatchev, M. (2007). Incorporating learning into disease surveillance systems, Advances in Disease Surveillance, 4, 107.

    Google Scholar 

  81. Nordin, J.D., Goodman, M.J., Kulldorff, M., Ritzwoller, D.P., Abrams, A.M., Kleinman, K., Levitt, M.J., Donahue, J. and Platt, R. (2005). Simulated anthrax attacks and syndromic surveillance, Emerging Infectious Diseases, 11 1394–1398.

    Google Scholar 

  82. Norström, M., Pfeiffer, D.U. and Jarp, J. (2000). A spacetime cluster investigation of an outbreak of acute respiratory disease in Norwegian cattle herds, Preventive Veterinary Medicine, 47, 107–119.

    Article  Google Scholar 

  83. Nunes, C. (2007). Tuberculosis incidence in Portugal: spatiotemporal clustering, International Journal of Health Geographics, 5(1), 51.

    Google Scholar 

  84. Oliver, M.N., Smith, E., Siadaty, M., Hauck, F.R. and Pickle, L.W. (2006). Spatial analysis of prostate cancer incidence and race in Virginia, 1990-1999, American Journal of Preventive Medicine, 30, 67–76.

    Article  Google Scholar 

  85. Onozuka, D. and Hagihara, A. (2007). Geographic prediction of tuberculosis clusters in Fukuoka, Japan, using the space-time scan statistic, BMC Infectious Diseases, 7, 26.

    Article  Google Scholar 

  86. Ozdenerol, E., Williams, B.L., Kang, S.Y. and Magsumbol, M.S. (2005). Comparison of spatial scan statistic and spatial filtering in estimating low birth weight clusters, International Journal of Health Geographics, 4, 19.

    Article  Google Scholar 

  87. Ozonoff, A., Webster, T., Vieira, V., Weinberg, J., Ozonoff, D. and Aschengrau, A. (2005). Cluster detection methods applied to the Upper Cape Cod cancer data, Environmental Health: A Global Access Science Source, 4, 19.

    Article  Google Scholar 

  88. Ozonoff, A., Jeffery, C., Manjourides, J., White, L.F. and Pagano, M. (2007). Effect of spatial resolution on cluster detection: a simulation study, International Journal of Health Geographics, 6, 52.

    Article  Google Scholar 

  89. Patil, G.P. and Taillie, C. (2004). Upper level set scan statistic for detecting arbitrarily shaped hotspots, Environmental and Ecological Statistics, 11, 183–197.

    Article  MathSciNet  Google Scholar 

  90. Patil, G.P., Modarres, R., Myers, W.L. and Patankar, P. (2006). Spatially constrained clustering and upper level set scan hotspot detection in surveillance geoinformatics, Environmental and Ecological Statistics, 13, 365–377.

    Article  MathSciNet  Google Scholar 

  91. Perez, A.M., Thurmond, M.C., Grant, P.W. and Carpenter, T.E. (2005). Use of the scan statistic on disaggregated province-based data: foot-and-mouth disease in Iran, Preventive Veterinary Medicine, 71, 197–207.

    Article  Google Scholar 

  92. Porter, M.D. and Brown, D.E. (2007). Detecting local regions of change in high-dimensional criminal or terrorist point processes, Computational Statistics & Data Analysis, 51, 2753–2768.

    Article  MATH  MathSciNet  Google Scholar 

  93. Rosychuk, R.J. (2006). Identifying geographic areas with high disease rates: when do confidence intervals for rates and a disease cluster detection method agree? International Journal of Health Geographics, 5, 46.

    Article  Google Scholar 

  94. Rosychuk, R.J., Huston, C. and Prasad, N.G.N. (2006). Spatial event cluster detection using a compound Poisson distribution, Biometrics, 62, 465–470.

    Article  MATH  MathSciNet  Google Scholar 

  95. Sabel, C.E., Boyle, P.J., Lytnen, M., Gatrell, A.C., Jokelainen, M., Flowerdew, R. and Maasilta, P. (2002). Spatial clustering of amyotrophic lateral sclerosis in Finland at place of birth and place of death, American Journal of Epidemiology, 157, 898–905.

    Article  Google Scholar 

  96. Sabhnani, M.R., Neill, D.B. and Moore, A.W. (2005). Detecting anomalous patterns in pharmacy retail data, Conference on Knowledge Discovery in Data Mining 2005.

    Google Scholar 

  97. Sahajpal, R., Ramaraju, G.V. and Bhatt, V. (2004). Applying Niching Genetic Algorithms for Multiple Cluster Discovery in Spatial Analysis, International Conference on Intelligent Sensing and Information Processing.

    Google Scholar 

  98. Sanchez, J., Stryhn, H., Flensburg, M., Ersboll, A.K. and Dohoo, I. (2005). Temporal and spatial analysis of the 1999 outbreak of acute clinical infectious bursal disease in broiler flocks in Denmark, Preventive Veterinary Medicine, 71, 209–223.

    Article  Google Scholar 

  99. Song, C. and Kulldorff, M. (2003). Power evaluation of disease clustering tests, International Journal of Health Geographics, 2, 9.

    Article  Google Scholar 

  100. Takahashi, K. and Tango, T. (2007). A scan statistic based on Anscombe’s variance stabilization transformation, Advances in Disease Surveillance, 4, 116.

    Google Scholar 

  101. Takahashi, K., Kulldorff, M., Tango, T. and Yie, K. (2007). A flexible space-time scan statistic for disease outbreak detection and monitoring, Advances in Disease Surveillance, 2, 70.

    Google Scholar 

  102. Tango, T. (2007). A spatial scan statistic scanning only the regions with elevated risk, Advances in Disease Surveillance, 4, 117.

    Google Scholar 

  103. Tango, T. and Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters, International Journal of Health Geographics, 4, 11.

    Article  Google Scholar 

  104. Tiwari, N., Adhikari, C.M.S., Tewari, A. and Kandpal, V. (2006). Investigation of geo-spatial hotspots for the occurrence of tuberculosis in Almora district, India, using GIS and spatial scan statistic, International Journal of Health Geographics, 5, 33.

    Article  Google Scholar 

  105. Viel, J.F., Floret, N. and Mauny, F. (2005). Spatial and space-time scan statistics to detect low rate clusters of sex ratio, Environmental and Ecological Statistics, 12, 289–299.

    Article  MathSciNet  Google Scholar 

  106. Yiannakoulias, N., Rosychuk, R.J. and Hodgson, J. (2007). Adaptations for finding irregularly shaped disease clusters, International Journal of Health Geographics, 6, 28.

    Article  Google Scholar 

  107. Yiannakoulias, N., Karosas, A., Schopflocher, D.P., Svenson, L.W. and Hodgson, M.J. (2007). Using quad trees to generate grid points for application in geographic disease surveillance, Advances in Disease Surveillance, 3.

    Google Scholar 

  108. Waller, L.A. and Jacquez, G.M. (2000). Disease models implicit in statistical tests of disease clustering, Epidemiology, 6, 584–590.

    Article  Google Scholar 

  109. Ward, M.P. and Carpenter, T.E. (2000). Techniques for analysis of disease clustering in space and in time in veterinary epidemiology, Preventive Veterinary Medicine, 45, 257–284.

    Article  Google Scholar 

  110. Washington, C.H., Radday, J., Streit, T.G., Boyd, H.A., Beach, M.J., Addiss, D.G., Lovince, R., Lovegrove, M.C., Lafontant, J.G., Lammie, P.J. and Hightower, A.W. (2004). Spatial clustering of filarial transmission before and after a Mass Drug Administration in a setting of low infection prevalence, Filaria Journal, 3, 3.

    Article  Google Scholar 

  111. Wheeler, D.C. (2007). A comparison of spatial clustering and cluster detection techniques for childhood leukemia incidence in Ohio, 1996-2003, International Journal of Health Geographics, 6, 13.

    Article  Google Scholar 

  112. Wieland, S.C., Brownstein, J.S., Berger, B. and Mandl, K.D. (2007). Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes, PNAS, 104(22), 904–909.

    Google Scholar 

  113. Womble, W.H. (1951). Differential systematics, Science, 114, 315–322.

    Article  Google Scholar 

  114. Zhang, T. and Lin, G. (2007). A decomposition of Moran’s I for clustering detection, Computational Statistics & Data Analysis, 51, 6123–6137.

    Article  MATH  MathSciNet  Google Scholar 

  115. Zimmerman, D.L. and Pavlik, C. (2008). Quantifying the effects of mask metadata disclosure and multiple releases on the confidentiality of geographically masked health data, Geographical Analysis, 40, 52–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Duczmal, L., Duarte, A., Tavares, R. (2009). Extensions of the Scan Statistic for the Detection and Inference of SpatialClusters. In: Glaz, J., Pozdnyakov, V., Wallenstein, S. (eds) Scan Statistics. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4749-0_7

Download citation

Publish with us

Policies and ethics