Extreme Value Results for Scan Statistics

  • Michael V. Boutsikas
  • Markos V. Koutras
  • Fotios S. Milienos
Part of the Statistics for Industry and Technology book series (SIT)


In the first part of this chapter we focus on the classical scan and multiple scan statistic, defined on a sequence of independent and identically distributed (i.i.d.) binary trials and review a number of bounds and approximations for their distributions which have been developed by the aid of distance measures. Moreover, we discuss briefly a number of asymptotic results that have been established by setting up appropriate conditions guaranteeing the convergence (to zero) of the distance measures’ upper bounds. In the second part, we study a multiple scan statistic enumerating variable by considering a general threshold-based framework, defined on i.i.d. continuous random variables. More specifically, we first prove a compound Poisson approximation for the total number of fixed length overlapping moving windows containing a prespecified number of threshold exceedances. The classical scan and multiple scan statistic may be treated as a special case of this general model. Next we exploit the previous result to gain some new extreme value results for the scan enumerating statistic under the assumption that the continuous random variables belong to the maximum domain of attraction of one of the three extreme value distributions (Fréchet, reversed Weibull, Gumbel). Finally, we elucidate how the general results can be applied in a number of classical continuous distributions (Pareto, uniform, exponential and normal).

Keywords and phrases:

Scan multiple scan statistic  Poisson and compound Poisson approximation Erdős–Rényi statistic extreme value theory maximum domain of attraction moving sums and exceedances 


  1. 1.
    Arnold, B.C. (1985). Pareto distributions, In Encyclopedia of Statistical Sciences, S. Kotz, N.L. Johnson and C.B. Read (editors), 568–574, John Wiley & Sons, New York.Google Scholar
  2. 2.
    Arnold, B.C. and Balakrishnan, N. (1989). Relations, Bounds, and Approximations for Order Statistics, Springer, New York.MATHGoogle Scholar
  3. 3.
    Arratia, R.L., Goldstein, L. and Gordon, L. (1990). Poisson approximation and the Chen-Stein method, Statistical Science, 5, 403–423.MathSciNetMATHGoogle Scholar
  4. 4.
    Arratia, R.L., Gordon, L. and Waterman, M. (1990). The Erdős-Rényi Law in distribution, for coin tossing and sequence matching, Annals of Statistics, 18, 539–570.CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Balakrishnan, N. and Koutras, M.V. (2002). Runs, Scans and Applications, John Wiley & Sons, New York.Google Scholar
  6. 6.
    Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximation, Clarendon Press, Oxford.MATHGoogle Scholar
  7. 7.
    Boutsikas, M.V. and Koutras, M.V. (2001). Compound Poisson approximation for sums of dependent random variables, In Ch.A. Charalambides, M.V. Koutras, N. Balakrishnan (eds), Probability and Statistical Models with Applications, 63–86, Chapman & Hall, Boca Raton, FL.Google Scholar
  8. 8.
    Boutsikas, M.V. and Koutras, M.V. (2002). Modeling claim exceedances over thresholds, Insurance: Mathematics and Economics, 30, 67–83.CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Boutsikas, M.V. and Koutras, M.V. (2006). On the asymptotic distribution of the discrete scan statistic, Journal of Applied Probability, 43, 1137–1154.CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Bowers, N.L., Gerber, H.U., Hickman, J., Jones, D.A. and Nesbitt, C.J. (1997). Actuarial Mathematics, 2nd edition, The Society of Actuaries, Illinois.Google Scholar
  11. 11.
    Chen, J. and Glaz, J. (1999). Approximations for the distribution and the moments of discrete scan statistics, In Scan Statistics and Applications, J. Glaz and N. Balakrishnan, (eds), Birkh\ddot{{ a}}user, Boston, MA.Google Scholar
  12. 12.
    Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer-Verlag, London.MATHGoogle Scholar
  13. 13.
    David, H.A. and Nagaraja, H.N. (2003). Order Statistics, (3rd edition), John Wiley & Sons, New York.CrossRefMATHGoogle Scholar
  14. 14.
    Deheuvels, P. and Devroye, L. (1987). Limit laws of Erd\ddot{{ o}}s-Rényi-Shepp type, The Annals of Probability, 15, 1363–1386.CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Dembo, A. and Karlin, S. (1992). Poisson approximations for r-scan processes, Annals of Applied Probability, 2, 329–357.CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Dudkiewicz, J. (1998). Compound Poisson approximation for extremes for moving minima in arrays of independent random variables, Applicationes Mathematicae, 25, 19–28.MathSciNetMATHGoogle Scholar
  17. 17.
    Embrechts, P., Kl\ddot{{ u}}ppelberg, C. and Mikosch, T. (1997). Modeling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin.Google Scholar
  18. 18.
    Erdős, P. and Rényi, A. (1970). On a new law of large numbers, Journal d’Analyse Mathematique, 23, 103–111.Google Scholar
  19. 19.
    Fu, J.C. (2001). Distribution of the scan statistic for a sequence of bistate trials, Journal of Applied Probability, 38, 908–916.CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Fu, J.C. and Lou, W.Y.W. (2003). Distribution Theory of Runs and Patterns and Its Applications, Word Scientific Publishing, Singapore.MATHGoogle Scholar
  21. 21.
    Glaz, J. and Balakrishnan, N. (eds.) (1999). Scan Statistics and Applications, Birkh\ddot{{ a}}user, Boston, MA.Google Scholar
  22. 22.
    Glaz, J. and Naus, J. (1991). Tight bounds and approximations for scan statistic probabilities for discrete data, The Annals of Applied Probability, 1, 306–318.CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Glaz, J., Naus, J. and Wallenstein, S. (2001). Scan Statistics, Springer-Verlag, New York.MATHGoogle Scholar
  24. 24.
    Goldstein, L. and Waterman, M. (1992). Poisson, compound Poisson and process approximations for testing statistical significance in sequence comparisons, Bulletin of Mathematical Biology, 54, 785–812.MATHGoogle Scholar
  25. 25.
    Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, John Wiley & Sons, New York.MATHGoogle Scholar
  26. 26.
    Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications, Imperial College Press, London.CrossRefMATHGoogle Scholar
  27. 27.
    Koutras, M.V. and Alexandrou, V.A. (1995). Runs, scans and run model distributions: a unified Markov chain approach, Annals of the Institute of Statistical Mathematics, 47, 743–766.CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Reiss, R.D. and Thomas, M. (1997). Statistical Analysis of Extreme Values, Birkh\ddot{{ a}}user, Basel.Google Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael V. Boutsikas
    • 1
  • Markos V. Koutras
    • 1
  • Fotios S. Milienos
    • 1
  1. 1.Department of Statistics and Insurance ScienceUniversity of PiraeusPiraeusGreece

Personalised recommendations