Skip to main content

Quotients of Calabi–Yau Varieties

  • Chapter
  • First Online:
Algebra, Arithmetic, and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 270))

Summary

Let X be a complex Calabi–Yau variety, that is, a complex projective variety with canonical singularities whose canonical class is numerically trivial. Let G be a finite group acting on X and consider the quotient variety XG. The aim of this paper is to determine the place of XG in the birational classification of varieties. That is, we determine the Kodaira dimension of XG and decide when it is uniruled or rationally connected. If G acts without fixed points, then κ(XG) = κ(X) = 0; thus the interesting case is when G has fixed points. We answer the above questions in terms of the action of the stabilizer subgroups near the fixed points. We give a rough classification of possible stabilizer groups which cause XG to have Kodaira dimension − or equivalently (as we show) to be uniruled. These stabilizers are closely related to unitary reflection groups.

2000 Mathematics Subject Classifications: 14J32, 14K05, 20E99 (Primary) 14M20, 14E05, 20F55 (Secondary)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Arad, J. Stavi, and M. Herzog – “Powers and products of conjugacy classes in groups,” Products of conjugacy classes in groups, Lecture Notes in Math., vol. 1112, Springer, Berlin, 1985, pp. 6–51.

    Google Scholar 

  2. S. Boucksom, J.-P. Demailly, M. Paun, and T. Peternell – “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension,” arXiv:math.AG/0405285.

    Google Scholar 

  3. A. Beauville – “Some remarks on Kähler manifolds with c 1 = 0,” Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 1–26.

    Google Scholar 

  4. H. F. Blichfeldt, “Variétés Kähleriennes dont la première classe de Chern est nulle,” J. Differential Geom. 18 (1983), no. 4, pp. 755–782 (1984).

    MathSciNet  Google Scholar 

  5. H. F. Blichfeldt – Finite collineation groups, with an introduction to the theory of groups of operators and substitution groups, University of Chicago Press, Chicago, Ill., 1917.

    Google Scholar 

  6. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson – Atlas of finite groups, Oxford University Press, Eynsham, 1985, Maximal subgroups and ordinary characters for simple groups, with computational assistance from J. G. Thackray.

    Google Scholar 

  7. A. M. Cohen – “Finite complex reflection groups,” Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 3, p. 379–436.

    MATH  Google Scholar 

  8. E. W. Ellers, N. Gordeev, and M. Herzog – “Covering numbers for Chevalley groups,” Israel J. Math. 111 (1999), pp. 339–372.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Feit – “The current situation in the theory of finite simple groups,” Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 55–93.

    Google Scholar 

  10. E. W. Ellers, “On finite linear groups in dimension at most 10”, Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) (New York), Academic Press, 1976, pp. 397–407.

    Google Scholar 

  11. T. Fujita – “On Kähler fiber spaces over curves,” J. Math. Soc. Japan 30 (1978), no. 4, pp. 779–794.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Griffiths and J. Harris – “Algebraic geometry and local differential geometry,” Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 3, pp. 355–452.

    MATH  MathSciNet  Google Scholar 

  13. M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer – “CHEVIE—a system for computing and processing generic character tables,” Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, pp. 175–210, Computational methods in Lie theory (Essen, 1994).

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Graber, J. Harris, and J. Starr – “Families of rationally connected varieties,” J. Amer. Math. Soc. 16 (2003), no. 1, pp. 57–67 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  15. P. A. Griffiths – “Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping,” Inst. Hautes Études Sci. Publ. Math. (1970), no. 38, pp. 125–180.

    Article  MATH  Google Scholar 

  16. R. M. Guralnick and P. H. Tiep – “A Problem of Kollár and Larsen on Finite Linear Groups and Crepant Resolutions,” May 2009.

    Google Scholar 

  17. G. Hiss and G. Malle – “Low-dimensional representations of quasi-simple groups,” LMS J. Comput. Math. 4 (2001), pp. 22–63 (electronic).

    MATH  MathSciNet  Google Scholar 

  18. C. D. Hacon and J. McKernan – “Shokurov’s Rational Connectedness Conjecture,” Duke Math., 138 (2007), vol, 119–136.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. E. Howe – “On the character of Weil’s representation,” Trans. Amer. Math. Soc. 177 (1973), pp. 287–298.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Ito and M. Reid – “The McKay correspondence for finite subgroups of SL(3, C),” Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 221–240.

    Google Scholar 

  21. Y. Kawamata – “Characterization of abelian varieties,” Compositio Math. 43 (1981), no. 2, pp. 253–276.

    MATH  MathSciNet  Google Scholar 

  22. R. E. Howe, “Minimal models and the Kodaira dimension of algebraic fiber spaces,” J. Reine Angew. Math. 363 (1985), pp. 1–46.

    MathSciNet  Google Scholar 

  23. J. Kollár and S. Mori – Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  24. J. Kollár – Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  25. A. V. Korlyukov – “Finite linear groups generated by quadratic elements of order 4,” Vestsı̄ Akad. Navuk BSSR Ser. Fı̄z.-Mat. Navuk (1986), no. 4, pp. 38–40, 124.

    MathSciNet  Google Scholar 

  26. A. S. Kleshchev and P. H. Tiep – “On restrictions of modular spin representations of symmetric and alternating groups,” Trans. Amer. Math. Soc. 356 (2004), no. 5, pp. 1971–1999 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Lawther and M. W. Liebeck – “On the diameter of a Cayley graph of a simple group of Lie type based on a conjugacy class,” J. Combin. Theory Ser. A 83 (1998), no. 1, pp. 118–137.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Looijenga – “Root systems and elliptic curves,” Invent. Math. 38 (1976/77), no. 1, pp. 17–32.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. W. Liebeck and A. Shalev – “Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks,” J. Algebra 276 (2004), no. 2, pp. 552–601.

    Article  MATH  MathSciNet  Google Scholar 

  30. Y. Miyaoka and S. Mori – “A numerical criterion for uniruledness,” Ann. of Math. (2) 124 (1986), no. 1, pp. 65–69.

    Article  MathSciNet  Google Scholar 

  31. S. Mori, D. R. Morrison, and I. Morrison – “On four-dimensional terminal quotient singularities,” Math. Comp. 51 (1988), no. 184, pp. 769–786.

    Article  MATH  MathSciNet  Google Scholar 

  32. D. R. Morrison – “Canonical quotient singularities in dimension three,” Proc. Amer. Math. Soc. 93 (1985), no. 3, pp. 393–396.

    Article  MATH  MathSciNet  Google Scholar 

  33. D. R. Morrison and G. Stevens – “Terminal quotient singularities in dimensions three and four,” Proc. Amer. Math. Soc. 90 (1984), no. 1, pp. 15–20.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Nakaoka – “Decomposition theorem for homology groups of symmetric groups,” Ann. of Math. (2) 71 (1960), pp. 16–42.

    Article  MathSciNet  Google Scholar 

  35. T. Peternell – “Minimal varieties with trivial canonical classes. I,” Math. Z. 217 (1994), no. 3, pp. 377–405.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Reid – “Canonical 3-folds,” Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 273–310.

    Google Scholar 

  37. D. R. Morrison and, “Young person’s guide to canonical singularities,” Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414.

    Google Scholar 

  38. D. R. Morrison and, “La correspondance de McKay,” Astérisque (2002), no. 276, pp. 53–72, Séminaire Bourbaki, Vol. 1999/2000.

    Google Scholar 

  39. G. C. Shephard and J. A. Todd – “Finite unitary reflection groups,” Canadian J. Math. 6 (1954), pp. 274–304.

    MATH  MathSciNet  Google Scholar 

  40. G. M. Seitz and A. E. Zalesskii – “On the minimal degrees of projective representations of the finite Chevalley groups. II,” J. Algebra 158 (1993), no. 1, pp. 233–243.

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Wales – “Quasiprimitive linear groups with quadratic elements,” J. Algebra 245 (2001), no. 2, pp. 584–606.

    Article  MATH  MathSciNet  Google Scholar 

  42. Q. Zhang – “On projective manifolds with nef anticanonical bundles,” J. Reine Angew. Math. 478 (1996), pp. 57–60.

    MATH  MathSciNet  Google Scholar 

  43. G. M. Seitz and A. E. Zalesskii, “On projective varieties with nef anticanonical divisors,” Math. Ann. 332 (2005), no. 3, pp. 697–703.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Kollár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kollár, J., Larsen, M. (2009). Quotients of Calabi–Yau Varieties. In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 270. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4747-6_6

Download citation

Publish with us

Policies and ethics