Skip to main content

The Weil Proof and the Geometry of the Adelès Class Space

  • Chapter
  • First Online:
Algebra, Arithmetic, and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 269))

Summary

This paper explores analogies between the Weil proof of the Riemann hypothesis for function fields and the geometry of the adèles class space, which is the noncommutative space underlying Connes' spectral realization of the zeros of the Riemann zeta function. We consider the cyclic homology of the cokernel (in the abelian category of cyclic modules) of the “restriction map” defined by the inclusion of the idèles class group of a global field in the noncommutative adèles class space. Weil's explicit formula can then be formulated as a Lefschetz trace formula for the induced action of the idèles class group on this cohomology. In this formulation the Riemann hypothesis becomes equivalent to the positivity of the relevant trace pairing. This result suggests a possible dictionary between the steps in the Weil proof and corresponding notions involving the noncommutative geometry of the adèles class space, with good working notions of correspondences, degree, and codegree etc. In particular, we construct an analog for number fields of the algebraic points of the curve for function fields, realized here as classical points (low temperature KMS states) of quantum statistical mechanical systems naturally associated to the periodic orbits of the action of the idèles class group, that is, to the noncommutative spaces on which the geometric side of the trace formula is supported.

2000 Mathematics Subject Classifications: 11M36, 58B34, 11M26, 46L55

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. AndrÉ, Une introduction aux motifs, Panoramas et Synthèses, Vol. 17, Société mathématique de France, 2005.

    Google Scholar 

  2. M.F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic complexes: I, Annals of Math. Vol. 86 (1967), 374-407.

    Article  MathSciNet  Google Scholar 

  3. S. Bloch, H. Esnault, D. Kreimer, On motives associated to graph polynomials, Commun. Math. Phys. 267 (2006), 181-225.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Bombieri, Problems of the Millennium: The Riemann Hypothesis, Clay Mathematical Institute (2000).

    Google Scholar 

  5. J.B. Bost, A. Connes, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (N.S.) 1 (1995), no. 3, 411-457.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133-252.

    MathSciNet  Google Scholar 

  7. A. Connes, Cohomologie cyclique et foncteurs \({\rm Ext}\sp n\), C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23, 953-958.

    MATH  MathSciNet  Google Scholar 

  8. A. Connes, Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. No. 62 (1985), 257-360.

    MathSciNet  Google Scholar 

  9. A. Connes, Noncommutative Geometry, Academic Press, 1994.

    Google Scholar 

  10. A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Selecta Math. (N.S.) 5 (1999), no. 1, 29-106.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Connes, C. Consani, M. Marcolli, Noncommutative geometry and motives: the thermodynamics of endomotives, Advances in Mathematics, 214 (2007) N.2, 761-831.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Connes, M. Marcolli, From physics to number theory via noncommutative geometry. Part I. Quantum statistical mechanics of \({\mathbb Q}\)-lattices, in “Frontiers in Number Theory, Physics, and Geometry, I”, 269-350, 2006.

    Google Scholar 

  13. A. Connes, M. Marcolli, Noncommutative geometry, quantum fields and motives, Colloquium Publications, Vol. 55, American Mathematical Society, 2008.

    Google Scholar 

  14. A. Connes, M. Marcolli, N. Ramachandran, KMS states and complex multiplication, Selecta Math. (New Ser.) 11 (2005), no. 3-4, 325-347.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Connes, M. Marcolli, N. Ramachandran, KMS states and complex multiplication, II, in “Operator Algebras - The Abel Symposium 2004”, 15-60, Springer, 2006.

    Google Scholar 

  16. A. Connes, G. Skandalis, The longitudinal index theorem for foliations, Publ. RIMS Kyoto Univ. 20 (1984) 1139-1183.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Connes, M. Takesaki, The flow of weights on factors of type III. Tôhoku Math. J. 29 (1977), 473-575.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Consani, Double complexes and Euler L-factors, Compositio Math. 111 (1998), no. 3, 323-358.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. Consani, M. Marcolli, Archimedean cohomology revisited, in “Noncommutative Geometry and Number Theory” 109-140. Vieweg Verlag, 2006.

    Google Scholar 

  20. C. Consani, M. Marcolli, Quantum statistical mechanics over function fields, Journal of Number Theory 123 (2007), 487-528.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Deligne, Théorie de Hodge III, Publ. Math. IHES 44 (1974), 5-78.

    MATH  MathSciNet  Google Scholar 

  22. A. Goncharov, Yu. Manin, Multiple zeta motives and moduli spaces \(\bar M_{0,n}\), Compos. Math. 140 no. 1 (2004), 1-14.

    Article  MATH  MathSciNet  Google Scholar 

  23. V. Guillemin, S. Sternberg, Geometric asymptotics, Math. Surveys 14, American Mathematical Society, 1977.

    Google Scholar 

  24. V. Guillemin, Lectures on spectral theory of elliptic operators, Duke Math. J., 44 3 (1977), 485-517.

    Article  MathSciNet  Google Scholar 

  25. E. Ha, F. Paugam, Bost-Connes-Marcolli systems for Shimura varieties. I. Definitions and formal analytic properties, IMRP Int. Math. Res. Pap. 2005, no. 5, 237-286.

    Article  MathSciNet  Google Scholar 

  26. B. Jacob, Bost-Connes type systems for function fields, J. Noncommutative Geometry, Vol 1 (2007), no. 2, 141-211.

    Article  MATH  Google Scholar 

  27. M. Laca, From endomorphisms to automorphisms and back: dilations and full corners, J. London Math. Soc. (2) 61 (2000), no. 3, 893-904.

    Article  MATH  MathSciNet  Google Scholar 

  28. Yu. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) 1968, 475-507.

    MathSciNet  Google Scholar 

  29. Yu. I. Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa), Columbia University Number Theory Seminar (New York, 1992). Astérisque 228 (1995), 4, 121-163.

    MathSciNet  Google Scholar 

  30. Yu. I. Manin, Real Multiplication and noncommutative geometry (ein Alterstraum), in “The legacy of Niels Henrik Abel”, 685-727, Springer, Berlin, 2004.

    Google Scholar 

  31. Yu. I. Manin, Von Zahlen und Figuren, in “Géométric an XXe siècle. Histoire et horizons.” (Ed. J. Kouneiher, D. Flament, Ph. Nabonnand, J.-J. Szczeciniarz.) Hermann, Paris, 2005, 24-44.

    Google Scholar 

  32. M. Marcolli, Arithmetic noncommutative geometry, University Lectures Series 36, American Mathematical Society, 2005.

    Google Scholar 

  33. R. Meyer, On a representation of the idelè class group related to primes and zeros of L-functions, Duke Math. J. 127 (2005), no. 3, 519-595.

    Article  MATH  MathSciNet  Google Scholar 

  34. B. Riemann, Mathematical Works, Dover, New York, 1953.

    Google Scholar 

  35. H.P.F. Swinnerton-Dyer, Applications of Algebraic Geometry to Number Theory, Proceedings Symposia in Pure Math. Vol. XX (1969), 21-26.

    Google Scholar 

  36. M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications. Lecture Notes in Math. 28, Springer, 1970.

    Google Scholar 

  37. M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249-310.

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Weil, Letter to Artin, Collected Papers, Vol. I (1980), 280-298.

    Google Scholar 

  39. A. Weil, On the Riemann hypothesis in function-fields, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 345-347.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Weil, Sur la théorie du corps de classes, J. Math. Soc. Japan, 3 (1951), 1-35.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Weil, Fonction zeta et distributions, Séminaire Bourbaki, Vol. 9 (1966), Exp. No. 312, 523-531.

    Google Scholar 

  42. A. Weil, Sur les formules explicites de la théorie des nombres premiers, Oeuvres complètes, Vol. 2, 48-62.

    Google Scholar 

  43. A. Weil, Sur les formules explicites de la théorie des nombres, Izv. Mat. Nauk., (Ser. Mat.) 36 (1972), 3-18.

    MATH  MathSciNet  Google Scholar 

  44. A. Weil, Basic Number Theory, Reprint of the second (1973) edition. Classics in Mathematics. Springer, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Connes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Connes, A., Consani, C., Marcolli, M. (2009). The Weil Proof and the Geometry of the Adelès Class Space. In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 269. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4745-2_8

Download citation

Publish with us

Policies and ethics