Skip to main content

Riemann–Roch for Real Varieties

  • Chapter
  • First Online:
Algebra, Arithmetic, and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 269))

Summary

We prove a Riemann–Roch type result for any smooth family of smooth oriented compact manifolds. It describes the class of the conjectural higher determinantal gerbe associated to the fibers of the family.

2000 Mathematics Subject Classifications: 57R20 58J (Primary); 17B65 (Secondary)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.F. Atiyah, F. Hirzebruch, Riemann–Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276–281.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Bloch, K 2 and algebraic cycles, Ann. of Math. (2) 99 (1974), 349–379.

    Article  MathSciNet  Google Scholar 

  3. R. Bott, On the characteristic classes of groups of diffeomorphisms, L'Enseignment Math. 23 (1977), 209–220.

    MATH  MathSciNet  Google Scholar 

  4. P. Bressler, R. Nest, B. Tsygan, Riemann–Roch theorems via deformation quantization. I, II, Adv. Math. 167 (2002), no. 1, 1–25, 26–73.

    MATH  MathSciNet  Google Scholar 

  5. L. Breen, On the classification of 2-gerbes and 2-stacks, Astérisque, 225 (1994).

    Google Scholar 

  6. J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Birkhäuser, Boston, 1993.

    Google Scholar 

  7. J.-L. Brylinski, E. Getzler, The homology of algebras of pseudodifferential symbols and the noncommutative residue, K-Theory 1 (1987), no. 4, 385–403.

    Article  MATH  MathSciNet  Google Scholar 

  8. K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831–879.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), 93–177, Contemp. Math., 67, Amer. Math. Soc., Providence, RI, 1987.

    Google Scholar 

  10. P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over \({\mathbb Q}\) (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989.

    Google Scholar 

  11. R. Elkik, Fibrés d'intersections et intégrales de classes de Chern, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 2, 195–226.

    MATH  MathSciNet  Google Scholar 

  12. B. Feigin, B. Tsygan, Riemann–Roch theorem and Lie algebra cohomology I, Proceedings of the Winter School on Geometry and Physics (Srní, 1988). Rend. Circ. Mat. Palermo (2) Suppl. 21 (1989), 15–52.

    MathSciNet  Google Scholar 

  13. D.B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York and London, 1986.

    MATH  Google Scholar 

  14. V. Hinich, V. Schechtman, Deformation theory and Lie algebra homology, I,II, Algebra Colloq. 4 (1997), no. 2, 213–240, 291–316.

    MATH  MathSciNet  Google Scholar 

  15. V. Kac, D. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA, 78 (1981), 3308–3312.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Kac, A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Comm. Math. Phys. 157 (1993), no. 3, 429–457.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Kallstrom, Smooth Modules over Lie Algebroids I, preprint math. AG/9808108.

    Google Scholar 

  18. M. Kapranov, E. Vasserot, Vertex algebras and the formal loop space, Publ. Math. Inst. Hautes Études Sci. 100 (2004), 209–269.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Kapranov, E. Vasserot, Formal loops II: a local Riemann–Roch theorem for determinantal gerbes, Ann. Sci. École Norm. Sup. (4) 40 (2007), 113–133.

    MATH  MathSciNet  Google Scholar 

  20. G. Laumon, L. Moret-Bailly, Champs Algébriques, Springer-Verlag, Berlin, 2000.

    MATH  Google Scholar 

  21. J. L. Loday, Cyclic Homology, Second Edition, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  22. J. Lott, Higher-degree analogs of the determinant line bundle, Comm. Math. Phys. 230 (2002), no. 1, 41–69.

    Article  MATH  MathSciNet  Google Scholar 

  23. K. McKenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, 213. Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  24. S. Morita, Geometry of Characteristic Classes, Translations of Mathematical Monographs, 199. Iwanami Series in Modern Mathematics, American Mathematical Society, Providence, RI, 2001

    MATH  Google Scholar 

  25. R. Nest, B. Tsygan, Algebraic index theorem for families, Adv. Math. 113 (1995), no. 2, 151–205.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Pressley, G.B. Segal, Loop Groups, Cambridge University Press, 1986.

    Google Scholar 

  27. A.G. Reiman, M.A. Semenov-Tyan-Shanskii, L.D. Faddeev, Quantum anomalies and cocycles on gauge groups, Funkt. Anal. Appl. 18 (1984), No. 4, 64–72.

    MathSciNet  Google Scholar 

  28. J. Tate, Residues of differentials on curves, Ann. Sci. École Norm. Sup. (4) 1 (1968) 149–159.

    MATH  MathSciNet  Google Scholar 

  29. M. Wodzicki, Cyclic homology of differential operators, Duke Math. J. 54 (1987), no. 2, 641–647.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Bressler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bressler, P., Kapranov, M., Tsygan, B., Vasserot, E. (2009). Riemann–Roch for Real Varieties. In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 269. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4745-2_4

Download citation

Publish with us

Policies and ethics