Skip to main content

p-adic Entropy and a p-adic Fuglede–Kadison Determinant

  • Chapter
  • First Online:
Algebra, Arithmetic, and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 269))

Summary

Using periodic points, we study a notion of entropy with values in the p-adic numbers. This is done for actions of countable discrete residually finite groups \(\Gamma\). For suitable \(\Gamma = \mathbb{Z}^d\)-actions we obtain p-adic analogues of multivariable Mahler measures. For certain actions of more general groups, the p-adic entropy can be expressed in terms of a p-adic analogue of the Fuglede–Kadison determinant from the theory of von Neumann algebras. Many basic questions remain open.

2000 Mathematics Subject Classifications: 11D88, 16S34, 19B28, 37A35, 37C35, 37C85

Dedicated to Yuri Ivanovich Manin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Besser, C. Deninger, p-adic mahler measures, J. reine angew. Math., 517:19–50, 1999.

    MathSciNet  Google Scholar 

  2. A. Bartels, W. Lück, H. Reich, On the Farrell–Jones conjecture and its applications, in preparation.

    Google Scholar 

  3. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 2 et 3, Hermann, 1972.

    Google Scholar 

  4. C. Deninger, Deligne periods of mixed motives, k-theory and the entropy of certain \(\mathbb{Z^n}\)-actions, J. Amer. Math. Soc., 10:259–281, 1997.

    Article  MathSciNet  Google Scholar 

  5. C. Deninger, Fuglede–Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc., 19:717–736, 2006.

    Article  MathSciNet  Google Scholar 

  6. C. Deninger, K. Schmidt, Expansive algebraic actions of discrete residually finite amenable groups and their entropy, Ergodic Theory Dynam. Systems, 27, no. 3:769–786, 2007.

    Article  MathSciNet  Google Scholar 

  7. M. Einsiedler, H. Rindler, Algebraic actions of the discrete Heisenberg group and other non-abelian groups, Aequationes Math., 62:117–135, 2001.

    Article  MathSciNet  Google Scholar 

  8. B. Fuglede, R.V. Kadison, Determinant theory in finite factors, Ann. Math., 55:520–530, 1952.

    Article  MathSciNet  Google Scholar 

  9. F.T. Farrell, P. Linnell, Whitehead groups and the Bass conjecture, Math. Ann., 326:723–757, 2003.

    MathSciNet  Google Scholar 

  10. R. Hartshorne, Algebraic Geometry, volume 52 of GTM. Springer, 1977.

    Google Scholar 

  11. P.H. Kropholler, P.A. Linnell, J.A. Moody, Applications of a new k-theoretic theorem to soluble group rings Proc. Amer. Math. Soc., 104:675–684, 1988.

    MathSciNet  Google Scholar 

  12. D. Lind, K. Schmidt, T. Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math., 101:593–629, 1990.

    Article  MathSciNet  Google Scholar 

  13. J. Milnor, Introduction to Algebraic K-theory, volume No. 72 of Annals of Mathematical Studies, Princeton University Press, 1971.

    Google Scholar 

  14. K. Schmidt, Dynamical Systems of Algebraic Origin, volume 128 of Progress in Mathematics, Birkhäuser, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Deninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Deninger, C. (2009). p-adic Entropy and a p-adic Fuglede–Kadison Determinant. In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 269. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4745-2_10

Download citation

Publish with us

Policies and ethics