Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 271))

Abstract

On a closed, (2n + 1)-dimensional Sasakian manifold, we show that either the dimension of the 1-nullity distribution N(1) is less than or equal to n, or N(1) is the entire tangent bundle TM. In the latter case, the Sasakian manifold M is isometric to a quotient of the Euclidean sphere under a finite group of isometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Baikoussis, D.E. Blair & T. Koufogiorgos, A decomposition of the curvature tensor of a contact manifold with Îľ in N(k), Mathematics Technical Report, University of Ioannina (Greece) (1992).

    Google Scholar 

  2. T.Q. Binh & L. Tam á ssy, Galloway’s compactness theorem on Sasakian manifolds, Aequa-tiones Math. 58 (1999), 118–124.

    MATH  Google Scholar 

  3. D.E. Blair, T. Koufogiorgos & B.T. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189–214.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhäuser, Boston, 2002.

    Google Scholar 

  5. D.E. Blair, Two remarks on contact metric structures, Tôhoku Math. J. 29 (1977), 319–324.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Boeckx, A full classification of contact metric (k,μ)-spaces, Illinois J. Math. 44 (2000), 212–219.

    MATH  MathSciNet  Google Scholar 

  7. C.P. Boyer, K. Galicki & B.M. Mann, Quaternionic reduction and Einstein manifolds, Commun. Anal. Geom. 1 (1993), 229–279.

    MATH  MathSciNet  Google Scholar 

  8. T. Frankel, On the fundamental group of a compact minimal submanifold, Ann. Math. 83 (1966), 68–73.

    Article  MathSciNet  Google Scholar 

  9. J. Milnor, Morse Theory, Annals of Mathematics Studies 51, Princeton University Press, Princeton, NJ, 1968.

    Google Scholar 

  10. P. Rukimbira, Rank and k-nullity of contact manifolds, Int. J. Math. Math. Sci. 20 (2004), 1025–1034.

    Article  MathSciNet  Google Scholar 

  11. R. Sharma, On the curvature of contact metric manifolds, J. Geom. 53 (1995), 179–190.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc. Japan 30 (1978), 509–531.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media LLC

About this chapter

Cite this chapter

Rukimbira, P. (2009). The 1-Nullity of Sasakian Manifolds. In: Galicki, K., Simanca, S.R. (eds) Riemannian Topology and Geometric Structures on Manifolds. Progress in Mathematics, vol 271. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4743-8_7

Download citation

Publish with us

Policies and ethics