Skip to main content

Functional Analytic Background for a Theory of Infinite-Dimensional Reductive Lie Groups

  • Chapter
  • First Online:
Developments and Trends in Infinite-Dimensional Lie Theory

Part of the book series: Progress in Mathematics ((PM,volume 288))

Summary

Motivated by the interesting and yet scattered developments in representation theory of Banach–Lie groups, we discuss several functional analytic issues which should underlie the notion of infinite-dimensional reductive Lie group: norm ideals, triangular integrals, operator factorizations, and amenability

2000 Mathematics Subject Classifications: Primary 22E65. Secondary 22E46, 47B10, 47L20, 58B25.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Arazy, Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), no. 4, 453–495.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Banaszczyk, On the existence of exotic Banach–Lie groups, Math. Ann. 264 (1983), no. 4, 485–493.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Beltiţă, Smooth Homogeneous Structures in Operator Theory, Monogr. and Surveys in Pure and Appl. Math., 137. Chapman & Hall/CRC Press, Boca Raton-London-New York-Singapore, 2006.

    Google Scholar 

  4. D. Beltiţă, Iwasawa decompositions of some infinite-dimensional Lie groups. Trans. Amer. Math. Soc. 361 (2009), no. 12, 6613–6644.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Beltiţă, J.E. Galé, Holomorphic geometric models for representations of C ∗ -algebras. J. Funct. Anal. 255 (2008), no. 10, 2888–2932.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Beltiţă, B. Prunaru, Amenability, completely bounded projections, dynamical systems and smooth orbits, Integral Equations Operator Theory 57 (2007), no. 1, 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Beltiţă, T.S. Ratiu, Symplectic leaves in real Banach Lie-Poisson spaces, Geom. Funct. Anal. 15 (2005), no. 4, 753–779.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Beltiţă, T.S. Ratiu, Geometric representation theory for unitary groups of operator algebras, Adv. Math. 208 (2007), no. 1, 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Beltita, T.S. Ratiu, A.B. Tumpach, The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal. 247 (2007), no. 1, 138–168.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Beltiţă, M. Şabac, Lie Algebras of Bounded Operators, Operator Theory: Advances and Applications, 120. Birkh¨auser Verlag, Basel, 2001.

    Google Scholar 

  11. R.P. Boyer, Representation theory of the Hilbert-Lie group U(H)2, Duke Math. J. 47 (1980), no. 2, 325–344.

    Article  MATH  MathSciNet  Google Scholar 

  12. R.C. Buck, Generalized group algebras, Proc. Nat. Acad. Sci. USA 36 (1950), 747–749.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Dykema, T. Figiel, G. Weiss, M. Wodzicki, Commutator structure of operator ideals, Adv. Math. 185 (2004), no. 1, 1–79.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.A. Erdos, The triangular factorization of operators on Hilbert space, Indiana Univ. Math. J. 22 (1972/73), 939–950.

    Article  MathSciNet  Google Scholar 

  15. J.A. Erdos, Triangular integration on symmetrically normed ideals, Indiana Univ. Math. J. 27 (1978), no. 3, 401–408.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Eymard, Moyennes Invariantes et Représentations Unitaires, Lecture Notes in Math. 300, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  17. S. Ferri, M. Neufang, On the topological centre of the algebra LUC(G) for general topological groups, J. Funct. Anal. 244 (2007), no. 1, 154–171.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.E. Galé, Geometr´ıa de ´orbitas de representaciones de grupos y ´algebras promediables, Rev. R. Acad. Cienc. Exactas Fís. Quím. Nat. Zaragoza (2) 61 (2006), 7–46.

    MATH  Google Scholar 

  19. I.C. Gohberg, M.G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969.

    Google Scholar 

  20. I.C. Gohberg, M.G. Kreĭn, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monogr., 24, Amer. Math. Soc., Providence, RI, 1970.

    Google Scholar 

  21. H. Grundling, unpublished manuscript.

    Google Scholar 

  22. H. Grundling, Generalising group algebras, J. London Math. Soc. (2) 72 (2005), no. 3, 742–762.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Grundling, K.-H. Neeb, Full regularity for a C ∗ -algebra of the canonical commutation relations. Rev. Math. Phys. 21 (2009), no. 5, 587–613.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. de la Harpe, Classical Banach–Lie Algebras and Banach–Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  25. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, vol. I. Grundl. Math. Wiss., Bd. 115. Springer-Verlag, Berlin, 1963.

    Google Scholar 

  26. K.H. Hofmann, Analytic groups without analysis, Inst. Nat. Alta Mat. Symp. Math. 16 (1975), 357–374.

    Google Scholar 

  27. V. Kaftal, G. Weiss, A survey on the interplay between arithmetic mean ideals, traces, lattices of operator ideals, and an infinite Schur-Horn majorization theorem, in: Hot Topics in Operator Theory, Theta Ser. Adv. Math., 9, Theta, Bucharest, 2008, pp. 101–135.

    MathSciNet  Google Scholar 

  28. A.W. Knapp, Lie Groups Beyond an Introduction, Progr. Math., 140, Birkh¨auser-Verlag, Boston-Basel-Berlin, 1996.

    Google Scholar 

  29. K.-H. Neeb, Holomorphic highest weight representations of infinite-dimensional complex classical groups, J. Reine Angew. Math. 497 (1998), 171–222.

    MATH  MathSciNet  Google Scholar 

  30. K.-H. Neeb, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, 28. Walter de Gruyter & Co., Berlin-New York, 2000.

    Google Scholar 

  31. K.-H. Neeb, Classical Hilbert-Lie groups, their extensions and their homotopy groups, in: Geometry and Analysis on Finite and Infinite-Dimensional Lie Groups (Beted_lewo, 2000), Banach Center Publ., 55, Polish Acad. Sci. Warsaw, 2002, pp. 87–151.

    Google Scholar 

  32. K.-H. Neeb, A Cartan-Hadamard theorem for Banach-Finsler manifolds, Geom. Dedicata 95 (2002), 115–156.

    Article  MATH  MathSciNet  Google Scholar 

  33. K.-H. Neeb, Infinite-dimensional groups and their representations, in: Lie Theory, Progr. Math., 228, Birkh¨auser, Boston, MA, 2004, pp. 213–328.

    Google Scholar 

  34. K.-H. Neeb, Towards a Lie theory of locally convex groups, Japan. J. Math. (3rd series) 1 (2006), no. 2, 291–468.

    Article  MATH  MathSciNet  Google Scholar 

  35. K.-H. Neeb, B. Ørsted, Unitary highest weight representations in Hilbert spaces of holomorphic functions on infinite-dimensional domains, J. Funct. Anal. 156 (1998), no. 1, 263–300.

    Article  MATH  MathSciNet  Google Scholar 

  36. A.L.T. Paterson, Amenability, Mathematical Surveys and Monographs, 29. American Mathematical Society, Providence, RI, 1988.

    Google Scholar 

  37. V. Pestov, Dynamics of Infinite-Dimensional Groups. The Ramsey-Dvoretzky-Milman Phenomenon, University Lecture Series, 40. Amer. Math. Soc. Providence, RI, 2006.

    Google Scholar 

  38. D. Pickrell, Separable representations for automorphism groups of infinite symmetric spaces, J. Funct. Anal. 90 (1990), no. 1, 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  39. I. Satake, Algebraic Structures of Symmetric Domains, Kano Mem. Lectures, 4. Publ. Math. Soc. Japan, 14. Iwanami Shoten & Princeton Univ. Press, Tokyo-Princeton, NJ, 1980.

    Google Scholar 

  40. E.H. Spanier, Algebraic Topology. Corrected reprint. Springer-Verlag, New York-Berlin, 1981.

    Google Scholar 

  41. S¸. Strătilă, D. Voiculescu, Representations of AF-algebras and of the Group U(), Lecture Notes in Math., 486. Springer-Verlag, Berlin-New York, 1975.

    Google Scholar 

  42. S. Turek, Universal minimal dynamical system for reals, Comment. Math. Univ. Carolin. 36 (1995), no. 2, 371–375.

    MATH  MathSciNet  Google Scholar 

  43. H. Upmeier, Symmetric Banach Manifolds and Jordan C ∗ -Algebras, Math. Stud., 104, Notas de Mat., 96, North-Holland, Amsterdam, 1985.

    Google Scholar 

  44. D.A. Vogan, Jr., The method of coadjoint orbits for real reductive groups, in: Representation Theory of Lie Groups (Park City, 1998), IAS/ Park City Math. Ser. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 177-238.

    Google Scholar 

  45. A. Weil, L’Int`egration dans les Groupes Topologiques et ses Applications, Actual. Sci. Ind., 869. Hermann et Cie., Paris, 1940.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Beltiţă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beltiţă, D. (2011). Functional Analytic Background for a Theory of Infinite-Dimensional Reductive Lie Groups. In: Neeb, KH., Pianzola, A. (eds) Developments and Trends in Infinite-Dimensional Lie Theory. Progress in Mathematics, vol 288. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4741-4_11

Download citation

Publish with us

Policies and ethics