Advertisement

Permutahedra, HKR Isomorphism and Polydifferential Gerstenhaber–Schack Complex

  • S. A. MerkulovEmail author
Chapter
Part of the Progress in Mathematics book series (PM, volume 287)

Abstract

This paper aims to give a short but self-contained introduction into the theory of (wheeled) props, properads, dioperads and operads, and illustrate some of its key ideas in terms of a prop(erad)ic interpretation of simplicial and permutahedra cell complexes with subsequent applications to the Hochschild–Kostant–Rosenberg type isomorphisms.

Operads Bialgebras Permutahedra 

Notes

Acknowledgements

The author is grateful to an anonymous referee for useful comments.

References

  1. Ba.
    Baranovsky, V.: A universal enveloping for L -algebras. Math. Res. Lett. 15(6), 1073–1089 (2008). arXiv:0706.1396Google Scholar
  2. BM.
    Borisov, D., Manin, Yu. I.: Generalized operads and their inner cohomomorphisms. In: Geometry and dynamics of groups and spaces, Progr. Math. 265, 247–308 Birkhäuser, Basel (2008)Google Scholar
  3. CFL.
    Cattaneo, A.S., Fiorenza, D., Longoni, R.L.: On the Hochschild-Kostant-Rosenberg map for graded manifolds. Int. Math. Res. Not. 62, 3899–3918 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Ch.
    Chapoton, F.: Opérades différentielles graduées sur les simplexes et les permutoédres. Bull. Soc. Math. 130(2), 233–251. France (2002)MathSciNetzbMATHGoogle Scholar
  5. GS1.
    Gerstenhaber, M., Schack, S.D.: Bialgebra cohomology, deformations, and quantum groups. Proc. Natl. Acad. Sci. USA 87, 478–481 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. GS2.
    Gerstenhaber, M., Schack, S.D.: Algebras, bialgebras, quantum groups, and algebraic deformations. Contemp. Math. 134, 51–92 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. GK.
    Getzler, E., Kapranov, M.M.: Modular operads. Compos. Math. 110, 65–126 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. EK.
    Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras, I. Selecta Math. (N.S.) 2, 1–41 (1996)Google Scholar
  9. Ko.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. LM.
    Lazarev, A.Yu., Movshev, M.V.: Deformations of Hopf algebras. Uspekhi Mat. Nauk. 46, 211–212 (1991)MathSciNetzbMATHGoogle Scholar
  11. Lo.
    Loday, J.L.: Cyclic homology. Grundlehren der Mathematischen Wissenschaften, 301. Springer-Verlag, Berlin (1998)Google Scholar
  12. MSS.
    Markl, M., Shnider, S., Stasheff, J.D.: Operads in algebra, topology and physics. Mathematical surveys and monographs, vol. 96. American Mathematical Society, Providence, RI (2002)Google Scholar
  13. Me1.
    Merkulov, S.A.: Prop profile of Poisson geometry. Commun. Math. Phys. 262(1), 117–135. math.DG/0401034 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Me4.
    Merkulov, S.A.: Quantization of strongly homotopy Lie bialgebras. arXiv:math/0612431 (2006)Google Scholar
  15. Merkulov, S.A.: Graph complexes with loops and wheels. In: Tschinkel, Yu. and Zarhin, Yu. (eds.) Algebra, Arithmetic and Geometry – Manin Festschrift, vol. II. Progress in Mathematics. Birkhaüser, MA (2008)Google Scholar
  16. Me3.
    Merkulov, S.A.: Lectures on props, Poisson geometry and deformation quantization. In: Dito, G., Lu, J.H., Maeda, Y., Weinstein, A. (eds.) Poisson Geometry in Mathematics and Physics. Contemp. Math., 450, Amer. Math. Soc., Providence, RI (2008)Google Scholar
  17. MV.
    Merkulov, S.A., Vallette, B.: Deformation theory of representations of prop(erad)s. J. Reine Angew. Math. (2007). Preprint, arXiv:0707.0889Google Scholar
  18. SU.
    Saneblidze, S., Umble, R.: Diagonals on the permutahedra, multiplihedra and associahedra. Homology Homotopy Appl. 6, 363–411 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. St.
    Stasheff, J.D.: On the homotopy associativity of H-spaces, I II, Trans. Am. Math. Soc. 108, 272–292; 293–312 (1963)MathSciNetzbMATHGoogle Scholar
  20. Va.
    Vallette, B.: A Koszul duality for props. Trans. Am. Math. Soc. 359, 4865–4943 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsStockholm UniversityStockholmSweden

Personalised recommendations