Advertisement

Categorification of Acyclic Cluster Algebras: An Introduction

  • Bernhard KellerEmail author
Chapter
Part of the Progress in Mathematics book series (PM, volume 287)

Abstract

This is a concise introduction to Fomin–Zelevinsky’s cluster algebras and their links with the representation theory of quivers in the acyclic case. We review the definition cluster algebras (geometric, without coefficients), construct the cluster category and present the bijection between cluster variables and rigid indecomposable objects of the cluster category.

Key words

Cluster algebra Associahedron Quiver representation Triangulated category Hallalgebra 

References

  1. 1.
    Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras. Techniques of representation theory, vol. 1, London Mathematical Society Student Texts, vol. 65. Cambridge University Press, Cambridge (2006)Google Scholar
  2. 2.
    Auslander, M., Reiten, I., Smalø, S.: Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge (1995) (English)Google Scholar
  3. 3.
    Bakke Buan, A., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi-Yau categories and unipotent groups. Compos. Math. 145(4), 1035–1079 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bakke Buan, A., Marsh, R.J.: Cluster-tilting theory. Trends in representation theory of algebras and related topics. Contemp. Math., vol. 406, pp. 1–30. American Mathematical Society, Providence, RI (2006)Google Scholar
  5. 5.
    Bakke Buan, A., Marsh, R.J., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bakke Buan, A., Marsh, R.J., Reiten, I.: Cluster-tilted algebras. Trans. Am. Math. Soc. 359(1), 323–332 (2007) electronicMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bakke Buan, A., Marsh, R.J., Reiten, I., Todorov, G.: Clusters and seeds in acyclic cluster algebras. Proc. Amer. Math. Soc. 135(10), 3049–3060 (2007) (electronic). With an appendix coauthored in addition by P. Caldero and B. KellerGoogle Scholar
  8. 8.
    Bakke Buan, A., Marsh, R.J., Reiten, I.: Cluster mutation via quiver representations. Comment. Math. Helv. 83(1), 143–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)zbMATHGoogle Scholar
  10. 10.
    Bridgeland, T.: Stability conditions and Hall algebras. Talk at the meeting Recent developments in Hall algebras. Luminy, November 2006zbMATHGoogle Scholar
  11. 11.
    Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. arXiv:math.AG/0212237 (to appear)Google Scholar
  12. 12.
    Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81(3), 595–616 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (A n case). Trans. Am. Math. Soc. 358(5), 1347–1364 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Caldero, P., Keller, B.: From triangulated categories to cluster algebras. Inv. Math. 172, 169–211 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Caldero, P., Keller, B.: From triangulated categories to cluster algebras. II. Ann. Sci. École Norm. Sup. (4) 39(6), 983–1009 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Caldero, P., Reineke, M.: On the quiver Grassmannian in the acyclic case. J. Pure Appl. Algebra 212(11), 2369–2380 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chapoton, F.: Enumerative properties of generalized associahedra. Sém. Lothar. Combin. 51, 16, Art. B51b (2004–2005) (electronic)Google Scholar
  18. 18.
    Chapoton, F., Fomin, S., Zelevinsky, A.: Polytopal realizations of generalized associahedra. Canad. Math. Bull. 45(4), 537–566 (2002). Dedicated to Robert V. MoodyMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations I: Mutations. Selecta Mathematica 14, 59–119 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fock V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Annales scientifiques de l’ENS 42(6), 865–930 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Fock V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm II: The intertwiner. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math., vol. 269, pp. 655–673. Birkhäuser, Boston (2009)Google Scholar
  22. 22.
    Fock V.V., Goncharov, A.B.: Cluster \(\mathcal{X}\)-varieties, amalgamation, and Poisson-Lie groups. In: Algebraic geometry and number theory, Progr. Math., vol. 253, pp. 27–68. Birkhäuser, Boston (2006)Google Scholar
  23. 23.
    Fock V.V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175(2), 223–286 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fomin, S.: Cluster algebras portal. www.math.lsa.umich.edu/~fomin/ cluster.html
  25. 25.
    Fomin, S., Reading, N.: Generalized cluster complexes and Coxeter combinatorics. Int. Math. Res. Not. 44, 2709–2757 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. Part I: Cluster complexes. arXiv:math/0608367Google Scholar
  27. 27.
    Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations, J. Am. Math. Soc. 15(2), 497–529 (2002) (electronic)Google Scholar
  28. 28.
    Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63–121 (2003)zbMATHGoogle Scholar
  29. 29.
    Fomin, S., Zelevinsky, A.: Cluster algebras: notes for the CDM-03 conference. Current developments in mathematics, pp. 1–34. Int. Press, Somerville, MA (2003)Google Scholar
  30. 30.
    Fomin, S., Zelevinsky, A.: Y -systems and generalized associahedra, Ann. Math. (2) 158(3), 977–1018 (2003)Google Scholar
  31. 31.
    Fomin, S., Zelevinsky, A.: Cluster algebras IV: coefficients. Compos. Math. 143, 112–164 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Fu, C., Keller, B.: On cluster algebras with coefficients and 2-Calabi-Yau categories. arXiv:0710.3152 [math.RT]Google Scholar
  33. 33.
    Gabriel, P., Roiter, A.V.: Representations of finite-dimensional algebras. Encyclopaedia Math. Sci., vol. 73. Springer, Berlin (1992)Google Scholar
  34. 34.
    Geiß, C., Leclerc, B., Schröer, J.: Auslander algebras and initial seeds for cluster algebras. J. LMS. arXiv:math.RT/0506405 (to appear)Google Scholar
  35. 35.
    Geiß, C., Leclerc, B., Schröer, J.: Partial flag varieties and preprojective algebras. Ann. Fourier. arXiv:math.RT/0609138 (to appear)Google Scholar
  36. 36.
    Geiß, C., Leclerc, B., Schröer, J.: Rigid modules over preprojective algebras II: The Kac-Moody case. arXiv:math.RT/0703039Google Scholar
  37. 37.
    Geiß, C., Leclerc, B., Schröer, J.: Semicanonical bases and preprojective algebras II: A multiplication formula. Compos. Math. arXiv:math.RT/0509483 (to appear)Google Scholar
  38. 38.
    Geiß, C., Leclerc, B., Schröer, J.: Semicanonical bases and preprojective algebras. Ann. Sci. École Norm. Sup. (4) 38(2), 193–253 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Geiß, C.: Leclerc, B., Schröer, J.: Rigid modules over preprojective algebras, Invent. Math. 165(3), 589–632 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry, Mosc. Math. J. 3(3), 899–934 (2003) 1199 (Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Weil-Petersson forms. Duke Math. J. 127(2), 291–311 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ginzburg, V.: Calabi-Yau algebras. arXiv:math/0612139v3 [math.AG]Google Scholar
  43. 43.
    Hubery, A.: Acyclic cluster algebras via Ringel-Hall algebras. Preprint available at the author’s home pageGoogle Scholar
  44. 44.
    Iyama, O., Reiten, I.: Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras. Am. J. Math. arXiv:math.RT/0605136 (to appear)Google Scholar
  45. 45.
    Kashiwara, M.: Bases cristallines. C. R. Acad. Sci. Paris Sér. I Math. 311(6), 277–280 (1990)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Keller, B.: Quiver mutation in java. Interactive computer program, July 2006, available at the author’s homepageGoogle Scholar
  47. 47.
    Keller, B.: On triangulated orbit categories. Doc. Math. 10, 551–581 (2005)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Keller, B., Reiten, I.: Acyclic Calabi-Yau categories are cluster categories. Preprint, with an appendix by Michel Van den Bergh (2006). arXiv:math.RT/0610594Google Scholar
  49. 49.
    Kontsevich, M.: Donaldson-Thomas invariants. Mathematische Arbeitstagung. June 22–28, 2007, MPI Bonn, www.mpim-bonn.mpg.de/preprints/
  50. 50.
    Kontsevich, M.: Donaldson-Thomas invariants, stability conditions and cluster transformations. Report on joint work with Y. Soibelman, talks at the IHES, October 11 and 12 (2007)Google Scholar
  51. 51.
    Kontsevich, M., Soibelman, Y.: Stability structures, Donaldson-Thomas invariants and cluster transformations. arXiv:0811.2435Google Scholar
  52. 52.
    Krattenthaler, C.: The F-triangle of the generalised cluster complex. Topics in discrete mathematics, Algorithms Combin., vol. 26, pp. 93–126. Springer, Berlin (2006)Google Scholar
  53. 53.
    Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Lusztig, G.: Total positivity in reductive groups, Lie theory and geometry. Prog. Math., vol. 123, pp. 531–568. Birkhäuser, Boston (1994)Google Scholar
  55. 55.
    Lusztig, G.: Canonical bases and Hall algebras. Representation theories and algebraic geometry (Montreal, PQ, 1997). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, pp. 365–399. Kluwer, Dordrecht (1998)Google Scholar
  56. 56.
    Lusztig, G.: Semicanonical bases arising from enveloping algebras, Adv. Math. 151(2), 129–139 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Marsh, R., Reineke, M., Zelevinsky, A.: Generalized associahedra via quiver representations. Trans. Am. Math. Soc. 355(10), 4171–4186 (2003) (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Musiker, G.: A graph theoretic expansion formula for cluster algebras of type B n and D n. arXiv:0710.3574v1 [math.CO], to appear in the Annals of CombinatoricsGoogle Scholar
  59. 59.
    Nakajima, H.: Quiver varieties and cluster algebras. arXiv:0905.0002v3 [math.QA]Google Scholar
  60. 60.
    Palu, Y.: On cluster characters for triangulated categories. arXiv:math/ 0703540v1 [math.RT]Google Scholar
  61. 61.
    Qin, F.: Quantum cluster variables via Serre polynomials. arXiv:1004.4171 [math.RT]Google Scholar
  62. 62.
    Reiten, I.: Tilting theory and cluster algebras. Preprint available at www.institut.math.jussieu.fr/ \(\widetilde{\mbox{ }}\) keller/ictp2006/lecturenotes/reiten.pdf
  63. 63.
    Ringel, C.M.: Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984)Google Scholar
  64. 64.
    Ringel, C.M.: Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future. Handbook of Tilting Theory, LMS Lecture Note Series, vol. 332, pp. 49–104. Cambridge University Press, Cambridge (2007)Google Scholar
  65. 65.
    Stasheff, J.D.: Homotopy associativity of H-spaces. I, II. Trans. Am. Math. Soc. 108, 275–292 (1963); 108, 293–312 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Szendröi, B.: Non-commutative Donaldson-Thomas invariants and the conifold. Geom. Topol. 12(2), 1171–1202 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Xiao, J., Xu, F.: Green’s formula with C -action and Caldero-Keller’s formula for cluster algebras. arXiv:0707.1175Google Scholar
  68. 68.
    Zelevinsky, A.: From Littlewood-Richardson coefficients to cluster algebras in three lectures. Symmetric functions 2001: surveys of developments and perspectives. NATO Sci. Ser. II Math. Phys. Chem., vol. 74, pp. 253–273. Kluwer, Dordrecht (2002)Google Scholar
  69. 69.
    Zelevinsky, A.: Cluster algebras: notes for 2004 IMCC (Chonju, Korea, August 2004). arXiv:math.RT/0407414Google Scholar
  70. 70.
    Zelevinsky, A.: Cluster algebras: origins, results and conjectures. Advances in algebra towards millennium problems, pp. 85–105. SAS Int. Publ., Delhi (2005)Google Scholar
  71. 71.
    Zelevinsky, A.: What is a cluster algebra?. Notices of the A.M.S. 54(11), 1494–1495 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut de Mathématiques de JussieuUMR 7586 du CNRS, Université Paris 7-Denis DiderotParis Cedex 05France

Personalised recommendations