Skip to main content

Green’s Formula with ℂ*-Action and Caldero–Keller’s Formula for Cluster Algebras

  • Chapter
  • First Online:

Part of the book series: Progress in Mathematics ((PM,volume 284))

Abstract

It is known that Green’s formula over finite fields gives rise to the comultiplications of Ringel–Hall algebras and quantum groups (see [Invent. Math. 120 (1995), 361–377], see also [J. Amer. Math. Soc. 4 (1991), 365–421]). In this chapter, we prove a projective version of Green’s formula in a geometric way. Then following the method of Hubery in [Hubery, Acyclic cluster algebras via Ringel–Hall algebras (preprint)], we apply this formula to proving Caldero–Keller’s multiplication formula for acyclic cluster algebras of arbitrary type.

Mathematics Subject Classifications (2000): 14M99, 16G20, 16G70, 17B35

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics. Adv. Math. 204 (2006), 572–618

    Google Scholar 

  2. P. Caldero and B. Keller, From triangulated categories to cluster algebras, arXiv:math.RT/0506018, Invent. Math. (to appear)

    Google Scholar 

  3. A. Dimca, Sheaves in topology. Universitext. Springer, Berlin, 2004

    Book  MATH  Google Scholar 

  4. M. Ding, J. Xiao and F. Xu, Realizing Enveloping Algebras via Varieties of Modules, arXiv:math.QA/0604560

    Google Scholar 

  5. S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15 (2002), no. 2, 497–529

    Google Scholar 

  6. C. Geiss, B. Leclerc and J. Schröer, Semicanonical bases and preprojective algebras II: a multiplication formula, preprint, Compositio Math (to appear)

    Google Scholar 

  7. J.A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math. 120 (1995), 361–377

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Hubery, From triangulated categories to Lie algebras: A theorem of Peng and Xiao, Proceedings of the Workshop on Representation Theory of Algebras and related Topics (Quer\(\acute{e}\)taro, 2004), editors J. De la Peña and R. Bautista

    Google Scholar 

  9. A. Hubery, Acyclic cluster algebras via Ringel–Hall algebras, preprint

    Google Scholar 

  10. A. Hubery, Hall Polynomials for Affine Quivers, preprint

    Google Scholar 

  11. D. Joyce, Constructible functions on Artin stacks, J. London Math. Soc. 74 (2006), 583–606

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421

    Article  MathSciNet  MATH  Google Scholar 

  13. R. MacPherson, Chern classes for singular algebraic varieties, Ann. Math. 100 (1974), 423–432

    Article  MathSciNet  MATH  Google Scholar 

  14. Ch. Riedtmann, Lie algebras generated by indecomposables, J. Algebra 170 (1994), 526–546

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Ringel,Hall algebras and quantum groups Invent. Math. 101 (1990), 583–592

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Ringel, Green’s theorem on Hall algebras, Representation theory of algebras and related topics (Mexico City, 1994), 185–245, CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI 1996

    Google Scholar 

  17. M. Rosenlicht, A Remark on quotient spaces, An. Acad. Brasil. Ci\hat{e}nc. 35 (1963), 487–489

    Google Scholar 

  18. B.Toën, Derived Hall algebras, Duke Math. J. 135 (2006), no. 3, 587–615

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Xiao, and F. Xu, Hall algebras associated to triangulated categories, Duke Math. J. (to appear)

    Google Scholar 

  20. J. Xiao, F. Xu and G. Zhang, Derived categories and Lie algebras, arXiv: math.QA/0604564

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xiao, J., Xu, F. (2010). Green’s Formula with ℂ*-Action and Caldero–Keller’s Formula for Cluster Algebras. In: Gyoja, A., Nakajima, H., Shinoda, Ki., Shoji, T., Tanisaki, T. (eds) Representation Theory of Algebraic Groups and Quantum Groups. Progress in Mathematics, vol 284. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4697-4_13

Download citation

Publish with us

Policies and ethics