Skip to main content

Part of the book series: Systems&Control: Foundations&Applications ((SCFA))

  • 1933 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. P. Aubin and A. Cellina, Differential Inclusions, New York: Springer-Verlag, 1984.

    MATH  Google Scholar 

  2. D. D. Bainov and P. S. Simeonov, Systems with Impulse Effects: Stability Theory and Applications, New York: Halsted Press, 1989.

    MATH  Google Scholar 

  3. V. Barbu and S. I. Grossman, “Asymptotic behavior of linear integrodifferential systems,” Trans. Amer. Math. Soc., vol. 171, pp. 277–288, 1972.

    Article  MathSciNet  Google Scholar 

  4. R. Bellman and K. L. Cooke, Differential-Difference Equations, New York: Academic Press, 1963.

    MATH  Google Scholar 

  5. H. Brezis, Operateurs Maximaux Monotones, Amsterdam: North-Holland, 1973.

    MATH  Google Scholar 

  6. R.W. Brockett, “Hybrid models for motion control systems,” Essays on Control Perspectives in the Theory and Its Applications, H. L. Trentelman and J. C. Willems, Eds., Boston: Birkhäauser, pp. 29–53, 1993.

    Google Scholar 

  7. B. Brogliato, S. I. Niculescu, and P. Orhant, “On the control of finite-dimensional systems with unilateral constraints,” IEEE Trans. Autom. Control, vol. 42, pp. 200–215, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. G. Crandall, “Semigroups of nonlinear transformations on general Banach spaces,” Contributions to Nonlinear Functional Analysis, E. H. Zarantonello, Ed., New York: Academic Press, 1971.

    Google Scholar 

  9. M. G. Crandall and T. M. Liggett, “Generation of semigroups of nonlinear transformations on general Banach spaces,” Amer. J. Math., vol. 93, pp. 265–298, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. DeCarlo, S. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and results on the stability and stabilizability of hybrid systems,” Proc. IEEE, vol. 88, pp. 1069–1082, 2000.

    Article  Google Scholar 

  11. J. Dieudonné, Foundations of Modern Analysis, New York: Academic Press, 1960.

    MATH  Google Scholar 

  12. N. Dunford and J. T. Schwarz, Linear Operators, Part I, New York: Wiley, 1958.

    Google Scholar 

  13. G. F. Franklin and J. D. Powell, Digital Control of Dynamical Systems, Reading, MA: Addison-Wesley, 1980.

    Google Scholar 

  14. A. Friedman, Partial Differential Equations of the Parabolic Type, Englewood Cliffs, NJ: Prentice Hall, 1964.

    Google Scholar 

  15. A. N. Godunov, “Peano’s theorem in Banach spaces,” Functional Anal. Appl.,vol. 9, pp. 53–56, 1975.

    Article  MATH  Google Scholar 

  16. A. Gollu and P. P. Varaiya, “Hybrid dynamical systems,” Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, Dec. 1989, pp. 2708–2712.

    Google Scholar 

  17. R. Grossman, A. Nerode, A. Ravn, and H. Rischel, Eds., Hybrid Systems, New York: Springer-Verlag, 1993.

    Google Scholar 

  18. W. Hahn, Stability of Motion, Berlin: Springer-Verlag, 1967.

    MATH  Google Scholar 

  19. J. K. Hale, Functional Differential Equations, Berlin: Springer-Verlag, 1971.

    MATH  Google Scholar 

  20. J. K. Hale, “Functional differential equations with infinite delays,” J. Math. Anal. Appl., vol. 48, pp. 276–283, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publ., vol. 33, Providence, RI: American Mathematical Society, 1957.

    Google Scholar 

  22. L. Höormander, Linear Partial Differential Equations, Berlin: Springer-Verlag, 1963.

    Google Scholar 

  23. S. G. Krein, Linear Differential Equations in Banach Spaces, Translation of Mathematical Monographs, vol. 29, Providence, RI: American Mathematical Society, 1970.

    Google Scholar 

  24. N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, Boston: D. Reidel, 1987.

    MATH  Google Scholar 

  25. T. Kurtz, “Convergence of sequences of semigroups of nonlinear equations with applications to gas kinetics,” Trans. Amer. Math. Soc., vol. 186, pp. 259–272, 1973.

    Article  MathSciNet  Google Scholar 

  26. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. I, II, New York: Academic Press, 1969.

    MATH  Google Scholar 

  27. A. Lasota and J. A. Yorke, “The generic property of existence of solutions of differential equations in Banach space,” J. Differential Equations, vol. 13, pp. 1–12, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,” IEEE Control Syst. Mag., vol. 19, pp. 59–70, 1999.

    Article  Google Scholar 

  29. A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical systems,” IEEE Trans. Circ. and Syst., vol. 46, pp. 120–134, 1999.

    Article  MATH  Google Scholar 

  30. A. N. Michel and B. Hu, “Towards a stability theory of general hybrid dynamical systems,” Automatica, vol. 35, pp. 371–384, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. N. Michel, and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, New York: Academic Press, 1977.

    MATH  Google Scholar 

  32. A. N. Michel and Y. Sun, “Stability of discontinuous Cauchy problems in Banach space,” Nonlinear Anal., vol. 65, pp. 1805–1832, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. N. Michel, Y. Sun, and A. P. Molchanov, “Stability analysis of discontinuous dynamical systems determined by semigroups,” IEEE Trans. Autom. Control, vol. 50, pp. 1277–1290, 2005.

    Article  MathSciNet  Google Scholar 

  34. A. N. Michel, K.Wang, and B. Hu, Qualitative Theory of Dynamical Systems – The Role of Stability Preserving Mappings, Second Edition, New York: Marcel Dekker, 2001.

    MATH  Google Scholar 

  35. A. N. Michel, K.Wang, and K. M. Passino, “Qualitative equivalence of dynamical systems with applications to discrete event systems,” Proc. of the 31st IEEE Conf. on Decision and Control, Tucson, AZ, Dec. 1992, pp. 731–736.

    Google Scholar 

  36. A. N. Michel, K. Wang and K. M. Passino, “Stability preserving mappings and qualitative equivalence of dynamical systems, Part I,” Avtomatika i Telemekhanika, vol. 10, pp. 3–12, 1994.

    MathSciNet  Google Scholar 

  37. R. K. Miller and A. N. Michel, Ordinary Differential Equations, New York: Academic Press, 1982.

    MATH  Google Scholar 

  38. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1975.

    MATH  Google Scholar 

  39. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, New York: Springer-Verlag, 1963.

    Google Scholar 

  40. R. D. Rasmussen and A. N. Michel, “Stability of interconnected dynamical systems described on Banach spaces,” IEEE Trans. Autom. Control, vol. 21, pp. 464–471, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  41. C. Rui, I. Kolmanovsky, and N. H. McClamroch, “Hybrid control for stabilization of a class of cascade nonlinear systems,” Proc. American Control Conf., Albuquerque, NM, June 1997, pp. 2800–2804.

    Google Scholar 

  42. M. Slemrod, “Asymptotic behavior of C0-semigroup as determined by the spectrum of the generator,” Indiana Univ. Math. J., vol. 25, pp. 783–791, 1976.

    Article  MathSciNet  Google Scholar 

  43. Y. Sun, A. N. Michel, and G. Zhai, “ Stability of discontinuous retarded functional differential equations with applications,” IEEE Trans. Autom. Control, vol. 50, pp. 1090–1105, 2005.

    Article  MathSciNet  Google Scholar 

  44. J. C. Willems, “Paradigms and puzzles in the theory of dynamical systems,” IEEE Trans. Autom. Control, vol. 36, pp. 259–294, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  45. H. Ye, A. N. Michel, and P. J. Antsaklis “A general model for the qualitative analysis of hybrid dynamical systems,” Proc. of the 34th IEEE Conf. on Decision and Control, New Orleans, LA, Dec. 1995, pp. 1473–1477.

    Google Scholar 

  46. H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,” IEEE Trans. Autom. Control, vol. 43, pp. 461–474, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  47. T. Yoshizawa, Stability Theory by Lyapunov’s Second Method, Math. Soc., Japan, Tokyo, 1966.

    Google Scholar 

  48. V. I. Zubov, Methods of A.M. Lyapunov and Their Applications, Groningen, The Netherlands: P. Noordhoff, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Michel, A.N., Hou, L., Liu, D. (2008). Dynamical Systems. In: Stability of Dynamical Systems. Systems&Control: Foundations&Applications. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4649-3_2

Download citation

Publish with us

Policies and ethics