Skip to main content

Discriminant of Certain K3 Surfaces

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 255))

Summary

In this article we study the discriminant of those K3 surfaces with involution which were introduced and investigated by Matsumoto, Sasaki, and Yoshida. We extend several classical results on the discriminant of elliptic curves to the discriminant of Matsumoto– Sasaki–Yoshida’s K3 surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allcock, D., Freitag, E. Cubic surfaces and Borcherds products, Comment. Math. Helv. 77 (2002), 270–296

    Article  MATH  MathSciNet  Google Scholar 

  2. Barth, W., Peters, C., Van de Ven, A. Compact Complex Surfaces, Springer, Berline (1984)

    MATH  Google Scholar 

  3. Beauville, A. Some remarks on Kähler manifolds with c 1 = 0, Classification of algebraic and analytic manifolds, Progress Math. 39 Birkhäuser, Boston, (1983), 1–26

    Google Scholar 

  4. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C. Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994), 311–428

    Article  MATH  MathSciNet  Google Scholar 

  5. Bismut, J.-M. Equivariant immersions and Quillen metrics, Jour. Differ. Geom. 41 (1995), 53–157

    MATH  MathSciNet  Google Scholar 

  6. Bismut, J.-M., Lebeau, G. Complex immersions and Quillen metrics, Publ. Math. IHES 74 (1991), 1–297

    MATH  Google Scholar 

  7. Bismut, J.-M., Gillet, H., Soulé, C. Analytic torsion and holomorphic determinant bundles I, II, III, Comm. Math. Phys. 115 (1988) 49–78, 79–126, 301–351

    Article  MathSciNet  Google Scholar 

  8. Borcherds, R.E. Automorphic forms with singularities on Grassmanians, Invent. Math. 132 (1998), 491–562

    Article  MATH  MathSciNet  Google Scholar 

  9. Borcherds, R.E. Reflection groups of Lorenzian lattices, Duke Math. Jour. 104 (2000), 319–366

    Google Scholar 

  10. Borcherds, R.E. An automorphic form related to cubic surfaces, math.AG/0002079 (2000)

    Google Scholar 

  11. Bost, J.-B. Théorie de l’intersection et théorème de Riemann–Roch arithmétiques, Astérisque 201–203 (1991), 43–88

    Google Scholar 

  12. Bruinier, J.H. Borcherds Products on O(2, l) and Chern Classes of Heegner Divisors, Lecture Notes Math. 1780 Springer (2002)

    Google Scholar 

  13. Conway, J.H., Sloan, N.J.A. Sphere packings, Lattices and Groups, Springer Berlin (1999)

    MATH  Google Scholar 

  14. Dolgachev, I.V. Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci. 81 (1996), 2599–2639

    Article  MATH  MathSciNet  Google Scholar 

  15. Fang, H., Lu, Z., Yoshikawa, K.-I. Analytic torsion for Calabi–Yau threefolds, preprint, arXiv: math.DG/0601411 (2006)

    Google Scholar 

  16. Gillet, H., Soulé, C. An arithmetic Riemann–Roch theorem, Invent. Math. 110 (1992), 473–543

    Article  MATH  MathSciNet  Google Scholar 

  17. Gritsenko, V.A., Nikulin, V.V. K3 surfaces, Lorentzian Kac–Moody algebras and mirror symmetry, Math. Res. Lett. 3 (1996), 211–229

    MATH  MathSciNet  Google Scholar 

  18. Gritsenko, V.A., Siegel automorphic form corrections of some Lorentzian Kac–Moody Lie algebras, Amer. Jour. Math. 119 (1997), 181–224

    Google Scholar 

  19. Gritsenko, V.A., Automorphic forms and Lorentzian Kac–Moody algebras, I, II, Internat. Jour. Math. 9 (1998), 153–199, 201–275

    Google Scholar 

  20. Harvey, J., Moore, G. Exact gravitational threshold correction in the Ferrara-Harvey-Strominger-Vafa model, Phys. Rev. D 57 (1998), 2329–2336

    Article  MathSciNet  Google Scholar 

  21. Huybrechts, D. Compact hyper-Kähler manifolds: basic results, Invent.Math. 135 (1999), 63–113

    Article  MATH  MathSciNet  Google Scholar 

  22. Katz, N. Pinceaux de Lefschetz: théorème d’existence, Groupe de monodromie en géométrie algébrique, Exposé XVII, SGA 7,II Lecture Notes Math. 340 Springer (1973), 213–253

    Google Scholar 

  23. Köhler, K., Roessler, D. A fixed point formula of Lefschetz type in Arakelov geometry I, Invent. Math. 145 (2001), 333–396

    Article  MATH  MathSciNet  Google Scholar 

  24. Koike, K., Shiga, H., Takayama N., Tsutsui, T. Study on the family of K3 surfaces induced from the lattice (D4)3 ⊕ _-2_ ⊕ _2_, Internat. Jour. Math. 12 (2001), 1049–1085

    Article  MATH  MathSciNet  Google Scholar 

  25. Kollár, J., Mori, S. Birational Geometry of Algebraic Varieties, Cambridge Univ. Press, Cambridge (1998)

    MATH  Google Scholar 

  26. Kondo, S. The moduli space of Enriques surfaces and Borcherds products, J.Alg. Geom. 11 (2002), 601–627

    MATH  MathSciNet  Google Scholar 

  27. Krieg, A. Modular Forms on Half-Spaces of Quaternions, Lecture Notes Math. 1143 Springer (1985)

    Google Scholar 

  28. Lang, S. Elliptic Functions, Springer, Berlin (1987)

    MATH  Google Scholar 

  29. Ma, X. Submersions and equivariant Quillen metrics, Ann. Inst. Fourier 50 (2000), 1539–1588

    MATH  Google Scholar 

  30. Matsumoto, K. Theta functions on the bounded symmetric domain of type I 2,2 and the period map of a 4-parameter family of K3 surfaces, Math. Ann. 295 (1993), 383–409

    Article  MATH  MathSciNet  Google Scholar 

  31. Matsumoto, K., Sasaki, T., Yoshida, M. The monodromy of the period map of a 4- parameter family of K3 surfaces and the hypergeometric function of type (3, 6), Internat. Jour. Math. 3 (1992), 1–164

    MATH  MathSciNet  Google Scholar 

  32. Nikulin, V.V. Integral Symmetric bilinear forms and some of their applications, Math. USSR Izv. 14 (1980) 103–167

    Article  MATH  Google Scholar 

  33. Nikulin, V.V. Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections, J. SovietMath. 22 (1983), 1401–1476

    Google Scholar 

  34. Siu, Y.-T. Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53–156

    Article  MATH  MathSciNet  Google Scholar 

  35. Voisin, C. Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, Complex projective geometry, London Math. Soc. Lecture Note 179 (1989), 294–303

    MathSciNet  Google Scholar 

  36. Yoshida, M. Hypergeometric Functions, My Love, Aspects of Math. Vieweg, Braunschweig (1997)

    Google Scholar 

  37. Yoshikawa, K.-I. Smoothing of isolated hypersurface singularities and Quillen metrics, Asian J. Math. 2 (1998), 325–344

    MATH  MathSciNet  Google Scholar 

  38. Yoshikawa, K.-I. Discriminant of theta divisors and Quillen metrics, Jour. Differ. Geom. 52 (1999), 73–115

    Google Scholar 

  39. Yoshikawa, K.-I. K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, Invent. Math. 156 (2004), 53–117

    Google Scholar 

  40. Yoshikawa, K.-I. Analytic torsion and automorphic forms on the moduli space, Sugaku Expositions 17 (2004), 1–21

    Google Scholar 

  41. Yoshikawa, K.-I. Borcea-Voisin threefolds, analytic torsion, and automorphic forms, in preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Yoshikawa, KI. (2008). Discriminant of Certain K3 Surfaces. In: Kobayashi, T., Schmid, W., Yang, JH. (eds) Representation Theory and Automorphic Forms. Progress in Mathematics, vol 255. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4646-2_6

Download citation

Publish with us

Policies and ethics