Summary
In this chapter we present the decomposition approach to the analysis of large gene expression profile data sets. We address the problem of analysis of transient time-course data of expression profiles. We accept the assumption that co-expression of genes can be related to their belonging to the same Gaussian component. We assume that parameters of Gaussian components, means and variances, can differ between time instants. However, the gene composition of components is unchanged between time instants. For such problem formulations we derive the appropriate version of expectation-maximization algorithm recursions for the estimation of model parameters.We apply the derived method to the data on gene expression profiles of human K562 erythroleukemic cells and we discuss the obtained gene clustering.
Key words
- Gene expression profiles
- maximum likelihood
- EM method
- Gaussian components
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Al-Shahrour, F., Diaz-Uriarte, R., Dopazo, J.: FatiGO: a web tool for finding significant associations of Gene Ontology terms withgroups of genes, Bioinformatics, 20, 578–580 (2004).
Bernardo, J., Smith, A.: Bayesian Theory. Wiley, New York (1994).
Bilmes, J.: A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report, University of Berkeley, ICSI-TR-97-021, (1997). http://citeseer.ist.psu.edu/bilmes98gentle.html
Broet, P., Richardson, S., Radvanyi, F.: Bayesian hierarchical model for identifying changes in gene expression from microarray experiments. J. Comp. Biol. 9, 671–683 (2002).
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistics Soc., Ser. B., 39, 1–38 (1977).
Gene Ontology Consortium, http://www.geneontology.org
Ghosh, D.: Mixture models for assessing differential expression in complex tissues using microarray data. Bioinformatics, 20, 1663–1669 (2004).
Ghosh, D., Chinnaiyan. A.M.: Mixture modelling of gene expression data from microarray experiments. Bioinformatics, 18, 275–286 (2002).
Konopacka, M., Rogolinski, J., Herok, R., Polanska, J., Fujarewicz, K., Hancock, R., Rzeszowska-Wolny, J.: Radiation induced bystander effects in human leukemia K562 cells in vitro. Acta Biochim. Pol., 50(S1), 169–170 (2003).
McLachan, G.J., Bean, R.W., Peel, D.: A mixture model-based approach to the clustering of microarray expression data., Bioinformatics, 18, 413–422 (2002).
McLachan, G.J., Peel, W.: Finite Mixture Distributions. Wiley, New York (2000).
Medvedovic, M., Sivaganesan, S.: Bayesian infinite mixture model based clustering of gene expression profiles. Bioinformatics, 18, 1194–1206 (2002).
Medvedovic, M., Yeung, K.Y., Bumgarner, R.E.: Bayesian mixtures for clustering replicated microarray data. Bioinformatics, 20, 1222–1232 (2004).
Ouyang, M., Welsh, W.J., Georgopoulos, P.: Gaussian mixture clustering and imputation of microarray data. Bioinformatics, 20 917–923 (2004).
Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components. J. Royal Statistics Soc., Ser. B., 59, 731–792 (1997).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 springer
About this chapter
Cite this chapter
Polańska, J., Widĺak, P., Rzeszowska-Wolny, J., Kimmel, M., Polański, A. (2007). Gaussian Mixture Decomposition of Time-Course DNA Microarray Data. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_31
Download citation
DOI: https://doi.org/10.1007/978-0-8176-4558-8_31
Publisher Name: Birkhäuser Boston
Print ISBN: 978-0-8176-4557-1
Online ISBN: 978-0-8176-4558-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)