Mathematical Modelling of Vascular Tumour Growth and Implications for Therapy

  • Jasmina Panovska
  • Helen M. Byrne
  • Philip K. Maini
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this chapter we briefly discuss the results of a mathematical model formulated in [22] that incorporates many processes associated with tumour growth. The deterministic model, a system of coupled non-linear partial differential equations, is a combination of two previous models that describe the tumour-host interactions in the initial stages of growth [11] and the tumour angiogenic process [6]. Combining these models enables us to investigate combination therapies that target different aspects of tumour growth. Numerical simulations show that the model captures both the avascular and vascular growth phases. Furthermore, we recover a number of characteristic features of vascular tumour growth such as the rate of growth of the tumour and invasion speed. We also show how our model can be used to investigate the effect of different anti-cancer therapies.

Key words

Tumor fractional transport cell fission self-entrapment comb model. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol., 60, 857–900 (1998).zbMATHCrossRefGoogle Scholar
  2. 2.
    Arakelyn, L., Merbi, Y., Agur, Z.: Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids. Eur. J. Cancer, 41, 159–167 (2004).CrossRefGoogle Scholar
  3. 3.
    Baxter, L.T., Yuan, F., Jain, R.K.: Pharmacokinetic analysis of the perivascular distribution of bifunctional antibodies and haptens: comparison with experimental data. Cancer Res., 52, 5838 (1992).Google Scholar
  4. 4.
    Breward, C.J.W., Byrne, H.M., Lewis, C.E.: A multiphase model describing vascular tumour growth. J. Math. Biol., 65, 609–640 (2003).CrossRefGoogle Scholar
  5. 5.
    Breward, C.J.W., Byrne, H.M., Lewis, C.E.: Modelling the interaction between tumour cells and a blood vessel in micro-environment within a vascular tumour. Eur. J. Appl. Math., 12, 529–556 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Byrne, H.M., Chaplain, M.A.J.: Mathematical models for tumour angiogenesis-numerical simulations and non-linear wave solutions. Bull. Math. Biol., 57, 461–486 (1995).zbMATHGoogle Scholar
  7. 7.
    Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Variations in tumour growth rates and metabolism with oxygen concentration, glucose concentration and extracellular pH. J. Cell. Physiol., 151, 386–394 (1992).CrossRefGoogle Scholar
  8. 8.
    De Angelis, E., Preziosi, L.: Advection-diffusion models for solid tumour evolution in vivo and related free boundary problems. Math. Models Methods Appl. Sci., 10, 379–407 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Edelstein, L.: The propagation of fungal colonies: a model for tissue growth. J. Theor. Biol., 98, 679–701 (1982).CrossRefMathSciNetGoogle Scholar
  10. 10.
    Folkman, J.: The vascularization of tumours In: Friedberg, E.C. (ed.) Cancer Biology: Readings from Scientific American. 115–124 (1986).Google Scholar
  11. 11.
    Gatenby, R.A., Gawlinski, E.T.: A reaction-diffusion model of cancer invasion. Cancer Res., 56, 5745–5753 (1996).Google Scholar
  12. 12.
    Gimbrone, M.A., Cotran, R.S., Leapman, S.B., Folkman, J.: Tumour growth and neovascularisation: an experimental model using rabbit cornea. J. Natl. Cancer Inst., 52, 413–427 (1974).Google Scholar
  13. 13.
    Griffiths, L., Daches, G.U.: The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor thymidine phosphorylase in human breast tumour cells in vitroand in vivo. Cancer Res., 57, 570–572 (1997).Google Scholar
  14. 14.
    Hahnfield, P., Panigraphy, D., Folkman, J., Hlatky, L.: Tumour development under angiogenic signalling: a dynamic theory of tumour growth, treatment response and post-vascular dormancy. Cancer Res., 59, 4770–4775 (1999).Google Scholar
  15. 15.
    Jackson, T.L., Byrne, H.M.: A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumours to chemotherapy. Math. Biosci., 164, 17–38 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moreira, J., Deutsch, A.: Cellular automaton models of tumour development: a critical review. Adv. Comp. Sys., 5, 247–267 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Muthukkaruppan, V.R.M., Kubai. L., Auerbach, R.: Tumour-induced neovascularisation in the mouse eye. J.Natl.Cancer Inst., 69, 699–705 (1982).Google Scholar
  18. 18.
    d’Onfrio, A., Gandolfi, A.: Tumour eradication by anti-angiogenic therapy: analysis and extension of the model by Hahnfeldt et al. (1999). Math. Biosc., 191, 154–184 (2004).Google Scholar
  19. 19.
    O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., Folkman, J.: Endostatin: an endogenous inhibitor of angiogenesis and tumour growth. Cell, 88, 277–285, (1997).CrossRefGoogle Scholar
  20. 20.
    O’Reilly, M.S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R.A., Moses, M., Lane, W.S., Cao, Y., Sage, E.H., Folkman, J.: Angiostatin. A novel angiogenic inhibitor that mediates the suppression of metastasis by a Lewis lung carcinoma. Cell, 79, 315–328, (1994).CrossRefGoogle Scholar
  21. 21.
    Orme, M.E., Chaplain, M.A.J.: Two-dimensional models of tumour angiogenesis and anti-angiogenic strategies. IMA. J. Math. Appl. Med. Biol., 14, 189–205 (1997).zbMATHCrossRefGoogle Scholar
  22. 22.
    Panovska, J.: Mathematical modelling of tumour growth and applications for therapy, D.Phil. Thesis, Oxford University, UK (2005).Google Scholar
  23. 23.
    Panovska, J., Byrne, H., Maini, P.: A mathematical model of vascular tumour growth, (in preparation).Google Scholar
  24. 24.
    Panovska, J., Byrne, H., Maini, P.: A theoretical study of the response of vascular tumours to different types of chemotherapy, (in preparation).Google Scholar
  25. 25.
    Pettet, G.J., Please, C.P., Tindall, M.J., McElwain, D.L.S.: The migration of cells in multicell tumor spheroids. Bull. Math. Biol., 63, 231–257 (2001).CrossRefGoogle Scholar
  26. 26.
    26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in Fortran: the art of scientific computing, 2nd edition. Cambridge University Press (1994).Google Scholar
  27. 27.
    Sherratt, J.A., Chaplain, M.A.J.: A new mathematical model for avascular tumour growth.Google Scholar
  28. 28.
    Sherratt, J.A., Nowak, M.A.: Oncogenes, anti-oncogenes and the immune response to cancer: a mathematical model. Proc. R. Soc. Lond., 248, 261–271 (1992).CrossRefGoogle Scholar
  29. 29.
    Sholley, M.M., Ferguson, G.P.: Mechanism of neovascularisation.Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest., 51, 624–634 (1984).Google Scholar
  30. 30.
    Smallbone, K., Gavaghan, D.J., Gatenby, R.A., Maini, P.K.: The role of acidity in solid tumour growth and invasion. J. Theor. Biol., 235, 476–484 (2005).CrossRefMathSciNetGoogle Scholar
  31. 31.
    Sutherland, R.M.: Cell and environment interactions in tumour microregions: the multicell spheroid model. Science, 240, 177–184 (1988).CrossRefGoogle Scholar
  32. 32.
    Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth II: Modelling growth saturation. IMA J. Math. Appl. Med. Biol., 16, 171–211 (1999).zbMATHCrossRefGoogle Scholar
  33. 33.
    West, C.M., Price, P.: Combretastatin A4 phosphate. Anticancer Drugs, 15, 179–187 (2004).CrossRefGoogle Scholar

Copyright information

© springer 2007

Authors and Affiliations

  • Jasmina Panovska
    • 1
  • Helen M. Byrne
    • 2
  • Philip K. Maini
    • 3
  1. 1.Chemical EngineeringHeriot-Watt University, Riccarton CampusEdinburgh
  2. 2.Centre for Mathematical Medicine, Division of Applied Mathematics, School of Mathematical SciencesUniversity of NottinghamNottingham
  3. 3.Centre for Mathematical BiologyMathematical Institute, Oxford UniversityOxford

Personalised recommendations