Skip to main content

Agent-Based Model for Developmental Pattern Formation with Multiscale Dynamics and Varying Cell Geometry

  • Chapter
Mathematical Modeling of Biological Systems, Volume I

Summary

Cells of the embryonic vertebrate limb in high-density culture undergo chondrogenic pattern formation, which results in the formation of regularly spaced “islands” of cartilage analogous to the cartilage primordia of the developing limb skeleton. In this chapter a discrete, multiscale agent-based stochastic model is described, which is based on an extended cell representation coupled with biologically motivated reaction-diffusion processes and cell-matrix adhesion, for studying the behavior of limb bud precartilage mesenchymal cells. The model is calibrated using experimental data, and the sensitivity of key parameters is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, M., Kiskowski, M., Glazier, J., Jiang, Y.: On cellular automaton approaches to modeling biological cells. In: Rosenthal, J., Gilliam, D. (eds.) Mathematical Systems Theory in Biology, Communication, and Finance, volume 134, 1–39. Springer-Verlag, New York (2003).

    Google Scholar 

  2. Belov, A.P., Giles, J.D.: Dynamical model of buoyant cyanobacteria. Hydrobiologia, 349, 87–97 (1997).

    Article  Google Scholar 

  3. Chaturvedi, R., Huang, C., Kazmierczak, B., Schneider, T., Izaguirre, J.A., Glimm, T., Hentschel, H.G.E., Glazier, J.A., Newman, S.A., Alber, M.S.: On multiscale approaches to three-dimensional modelling of morphogenesis. J. R. Soc. Interface, 2, 237–253 (2005).

    Article  Google Scholar 

  4. Christley, S., Alber, M.S., Newman, S.A.: Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Comput. Biol., in press.

    Google Scholar 

  5. Cui, C.: Dynamics of cell movement and tissue motion in gastrulation and micromass cell culture. Ph.D. thesis, Indiana University, Bloomington, IN, (2005).

    Google Scholar 

  6. Deutsch, A.: Orientation-induced pattern formation: swarm dynamics in a lattice-gas automaton model. Int. J. Bifurc. Chaos, 6, 1735–1752 (1996).

    Article  MATH  Google Scholar 

  7. Downie, S., Newman, S.: Morphogenetic differences between fore and hind limb precartilage mesenchyme: Relation to mechanisms of skeletal pattern formation. Dev. Biol., 162, 195–208 (1994).

    Article  Google Scholar 

  8. Downie, S., Newman, S.: Different roles for fibronectin in the generation of fore and hind limb precartilage condensations. Dev. Biol., 172, 519–530 (1995).

    Article  Google Scholar 

  9. Ede, D., Flint, O., Wilby, O., Colquhoun, P.: The development of precartilage condensations in limb bud mesenchyme in vivo and in vitro. In: Ede, D., Hinchliffe, J., Balls, M. (eds.) Vertebrate Limb and Somite Morphogenesis, 161–179. Cambridge University Press, Cambridge (1977).

    Google Scholar 

  10. Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. J. Theor. Biol., 160, 97–133 (1993).

    Article  Google Scholar 

  11. Forgacs, G., Newman, S.: Biological Physics of the Developing Embryo. Cambridge University Press (2005).

    Google Scholar 

  12. Frenz, D., Jaikaria, N., Newman, S.: The mechanism of precartilage mesenchymal condensation: A major role for interaction of the cell surface with the amino-terminal heparin-binding domain of fibronectin. Dev. Biol., 136, 97–103 (1989).

    Article  Google Scholar 

  13. Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E, 47, 2128–2154 (1993).

    Article  Google Scholar 

  14. Hall, B.K., Miyake, T.: All for one and one for all: Condensations and the initiation of skeletal development. BioEssays, 22, 138–147 (2000).

    Article  Google Scholar 

  15. Holmes, L.B., Trelstad, R.L.: Cell polarity in precartilage mouse limb mesenchyme cells. Dev. Biol., 78, 511–520 (1980).

    Article  Google Scholar 

  16. Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffand, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.A.: COMPUCELL, a multi-model framework for simulation of morphogenesis. Bioinformatics, 20, 1129–1137 (2004).

    Article  Google Scholar 

  17. Jones, D.S., Sleeandhoopesman, B.D.: Differential Equations and Mathematical Biology. CRC Press, Boca Raton, FL, (2003).

    MATH  Google Scholar 

  18. Kiskowski, M., Alber, M., Thomas, G., Glazier, J.A. Bronstein, N.B., Pu, J., Newman, S.A.: Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev. Biol., 271, 372–387 (2004).

    Article  Google Scholar 

  19. Lander, A., Nie, Q., Wan, F.: Do morphogen gradients arise by diffusion? Dev. Cell, 2, 785–796 (2002).

    Article  Google Scholar 

  20. Leonard, C., Fuld, H., Frenz, D., Downie, S.A., Massagué, J., Newman, S.A.: Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: Stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-β and evidence for endogenous TGF-β-like activity. Dev. Biol., 145, 99–109 (1991).

    Article  Google Scholar 

  21. Luo, Y., Kostetskii, I., Radice, G.: N-cadherin is not essential for limb mesenchymal chondrogenesis. Dev. Dyn., 232, 336–344 (2005).

    Article  Google Scholar 

  22. Maree, A., Hogeweg, P.: How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum. Proc. Nat. Acad. Sci. USA, 98, 3879–3883 (2001).

    Article  Google Scholar 

  23. Miura, T., Komori, M., Shiota, K.: A novel method for analysis of the periodicity of chondrogenic patterns in limb bud cell culture: Correlation of in vitro pattern formation with theoretical models. Anat. Embryol., 201, 419–428 (2000).

    Article  Google Scholar 

  24. Miura, T., Shiota, K.: Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: Experimental verification of theoretical models. Anal. Rec., 258, 100–107 (2000).

    Article  Google Scholar 

  25. Miura, T., Shiota, K.: TGFβ2 acts as an ‘‘activator’’ molecule in reaction-diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev. Dyn., 217, 241–249 (2000).

    Article  Google Scholar 

  26. Miura, T., Shiota, K., Morriss-Kay, G., Maini, P.K.: Mixed-mode pattern in Doublefootmutant mouse limb-Turing reaction-diffusion model on a growing domain during limb development. J. Theor. Biol. (in press) doi:10.1016/j.jtbi.2005.10.016, (2005).

    Google Scholar 

  27. Moftah, M., Downie, S., Bronstein, N.B, Mezemtseva, N., Pu, J., Maher, P.A., Newman, S.A.: Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. Dev. Biol., 249, 270–282 (2002).

    Article  Google Scholar 

  28. Murray, J.: Mathematical Biology. Springer-Verlag, New York (2003).

    MATH  Google Scholar 

  29. Newman, S.: Sticky fingers: Hox genes and cell adhesion in vertebrate development. BioEssays, 18, 171–174 (1996).

    Article  Google Scholar 

  30. Newman, S., Frisch, H.: Dynamics of skeletal pattern formation in developing chick limb. Science, 205, 662–668 (1979).

    Article  Google Scholar 

  31. Newman, S., Tomasek, J.: Morphogenesis of connective tissues. In: Comper, W.D. (ed.) Extracellular Matrix Molecular Components and Interactions, volume 2, 335–369. Harwood Academic Publishers, Amsterdam (1996).

    Google Scholar 

  32. Panikov, N.S.: Microbial Growth Kinetics. Springer, New York, (1995).

    Google Scholar 

  33. Scott, E.M., Rattray, E.A.S., Prosser, J.I., Killham, K., Glover, L.A., Lynch, J.M., Bazin, M.J.: A mathematical model for dispersal of bacterial inoculants colonizing the wheat rhizosphere. Soil Biol. Biochem., 27, 1307–1318 (1995).

    Article  Google Scholar 

  34. Sozinova, O., Jiang, Y., Kaiser, D., Alber, M.: A three-dimensional model of fruiting body formation. Proc. Natl. Acad. Sci. USA, 103(46), 17255–17259 (2006).

    Article  Google Scholar 

  35. Sozinova, O., Jiang, Y., Kaiser, D., Alber, M.: A three-dimensional model of myxobacterial aggregation by contact-mediated interactions. Proc. Nat. Acad. Sci. USA, 102, 11308–11312 (2005).

    Article  Google Scholar 

  36. Turing, A.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237, 37–72 (1952).

    Article  Google Scholar 

  37. Walker, D.C., Hill, G., Wood, S.M., Smallwood, R.H., Southgate, J.: Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Transactions on Nanobioscience, 3, 153–163 (2004).

    Article  Google Scholar 

  38. Wanner, O.: Modelling of biofilms. Biofouling, 10, 31–41 (1996).

    Article  Google Scholar 

  39. Widelitz, R., Jiang, T., Murray, B., Chuong, C.: Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis. J. Cell. Physiol., 156, 399–411 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Christley, S., Newman, S., Alber, M. (2007). Agent-Based Model for Developmental Pattern Formation with Multiscale Dynamics and Varying Cell Geometry. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_13

Download citation

Publish with us

Policies and ethics