Skip to main content

A Bayesian Approach to the Quantitative Polymerase Chain Reaction

  • Chapter
Mathematical Modeling of Biological Systems, Volume II

Summary

The quantitative polymerase chain reaction aims at determining the initial amount X0 of a specific portion of DNA molecules from the observation of the amplification process of the DNA molecules’ quantity. This amplification process is achieved through successive replication cycles. It depends on the efficiency {pnn} of the replication of the molecules, pn being the probability that a molecule will duplicate at replication cycle n. Modelling the amplification process by a branching process and assuming pn = p for all n, we estimate the unknown parameter Θ = (p, X0) using Markov chain Monte Carlo methods under a Bayesian framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, M.-H., Shao, Q.-M., Ibrahim, J. G.: Monte Carlo Methods in Bayesian Computation. Springer-Verlag, New York (2000).

    MATH  Google Scholar 

  2. Ferrée, F. (ed): Gene Quantification. Birkhäuser, New York (1998).

    Google Scholar 

  3. Gamerman, D.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall, London (1997).

    MATH  Google Scholar 

  4. Gilks, W. R., Richardson, S., Spiegelhalter, D. J.: Markov Chain Monte Carlo in Practice. Chapman & Hall, London (1996).

    MATH  Google Scholar 

  5. Jacob, C., Peccoud, J.: Estimation of the parameters of a branching process from migrating binomial observations. Adv. Appl. Prob., 30, 948–967 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  6. Jagers, P., Klebaner, F.: Random variation and concentration effects in PCR. J. Theoret. Biol., 224, 299–304 (2003).

    Article  MathSciNet  Google Scholar 

  7. Krawczak, M., Reiss, J., Schmidtke, J., Rosler, U.: Polymerase chain reaction: replication errors and reliability of gene diagnosis. Nucleic Acids Res., 17, 2197–2201 (1989).

    Article  Google Scholar 

  8. Lalam, N., Jacob, C., Jagers, P.: Modelling of the PCR amplification process by a sizedependent branching process and estimation of the efficiency. Adv. Appl. Prob., 36, 602– 615 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu, W., Saint, D. A.: Validation of a quantitative method for real time PCR kinetics. Biochemical and Biophysical Research Communications, 294, 347–353 (2002).

    Article  Google Scholar 

  10. Nedelman, J., Heagerty, P., Lawrence, C.: Quantitative PCR: procedures and precisions. Bull. Math. Biol., 54, 477–502 (1992).

    MATH  Google Scholar 

  11. Olofsson, U.: Branching processes: Polymerase Chain Reaction and mutation age estimation. Ph.D. Thesis, Department of Mathematical Statistics, Chalmers University of Technology, Göteborg, Sweden (2003).

    Google Scholar 

  12. Peccoud, J., Jacob, C.: Theoretical uncertainty of measurements using quantitative Polymerase Chain Reaction. Biophysical Journal, 71, 101–108 (1996).

    Article  Google Scholar 

  13. Peccoud, J., Jacob, C.: Statistical estimations of PCR amplification rates. In: Ferré, F. (ed) Gene Quantification. Birkhäuser, New York (1998).

    Google Scholar 

  14. Peirson, S. N., Butler, J. N., Foster, R. G.: Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res., 31, e73 (2003).

    Google Scholar 

  15. Piau, D.: Confidence intervals for nonhomogeneous branching processes and polymerase chain reactions. Ann. Probab., 33, 674–702 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  16. Saiki, R., Scharf, S., Faloona, F., Mullis, K., Horn, G. T., Ehrlich, H. A., Arnheim, M.: Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 239, 487–491 (1985).

    Article  Google Scholar 

  17. Schnell, S., Mendoza, C.: Enzymological considerations for a theoretical description of the Quantitative Competitive Polymerase Chain Reaction. J. Theor. Biol., 184, 433–440 (1997).

    Article  Google Scholar 

  18. Stolovitzky, G., Cecchi, G.: Efficiency of DNA replication in the polymerase chain reaction. Biophysics, 93, 12947–12952 (1996).

    Google Scholar 

  19. Sun, F.: The PCR and branching processes. J. of Computational Biology, 2, 63–86 (1995).

    Google Scholar 

  20. Weiss, G., von Haeseler, A.: A coalescent approach to the Polymerase Chain Reaction. Nucleic Acids Res., 25, 3082–3087 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Lalam, N., Jacob, C. (2008). A Bayesian Approach to the Quantitative Polymerase Chain Reaction. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_27

Download citation

Publish with us

Policies and ethics