Skip to main content

Summary

The human brain is characterized by complex convolution patterns. Analyzing the variability of these patterns among human subjects can reveal information for the detection of diseases that affect the human brain. This chapter presents a novel method to visualize the brain surface and its folding pattern at different scales. The analysis steps involved are the transformation of the cortical surface from high resolution magnetic resonance tomography images (MRI) to an initial representation as a triangulated mesh and finally to a representation as a series of spherical harmonic basis functions. The spherical harmonic parameterization of the surface is translation, rotation and scaling invariant. The parametric representation gives a multidimensional coefficient vector for each cortical surface. The technique allows easier recognition of convolutional patterns. The method is a first step toward a statistical multi-scale analysis of the brain surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hofman, M.A.: The fractal geometry of convoluted brains. J. Hirnforsch., 32, 103–11 (1991).

    Google Scholar 

  2. Kennedy, D.N., et al.: Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cereb. Cortex, 8, 372–84 (1998).

    Article  Google Scholar 

  3. Prothero, J.: Small brain, large brain—a quest for nature’s scale-up rules. J. Hirnforsch., 39, 335–47 (1999).

    Google Scholar 

  4. Prothero, J.W., Sundsten, S.W.: Folding of the cerebral cortex in mammals. A scalingmodel. Brain Behav. Evol. 24, 152–67 (1984).

    Article  Google Scholar 

  5. Richman, D.: Mechanical model of brain convolutional development. Science, 189, 18–21 (1975).

    Article  Google Scholar 

  6. Price, D., Willshaw, D.: Mechanisms of Cortical Development, 1st edition. Oxford: Oxford University Press (2000).

    Google Scholar 

  7. Hofman, M.A.: Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav. Evol., 27, 28–40 (1985).

    Article  Google Scholar 

  8. Hofman, M.A.: Size and shape of the cerebral cortex in mammals. II. The cortical volume. Brain Behav. Evol., 32, 17–26 (1988).

    Article  Google Scholar 

  9. Joshi, M., et al.: Brain segmentation and the generation of cortical surfaces. Neuroimage, 9, 461–76 (1999).

    Article  Google Scholar 

  10. Blow, T.: Spherical diffusion for 3d surface smoothing. 1st International Symposium on 3D Data Processing, Visualization and Transmission, Padova, Italy, 449–458 (2002).

    Google Scholar 

  11. Brechbühler, C., Gerig, G., Kübler, O.: Parametrization of closed surfaces for 3-d shape description. CVIU, 61, 154–170 (1995).

    Google Scholar 

  12. Van Essen, D.C., Drury, H.A.: Structural and functional analyses of human cerebral cortex using a surface-based atlas. J. Neurosci., 17, 7079–102 (1997).

    Google Scholar 

  13. Riviere, D., et al.: Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med. Image Anal., 6, 77–92 (2002).

    Article  Google Scholar 

  14. Pham, D.L., Prince J.L.: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognition Letters, 20, 57–68 (1999).

    Article  MATH  Google Scholar 

  15. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9, 195–207 (1999).

    Article  Google Scholar 

  16. Kelemen, A., Szekely, G., Gerig, G.: Elastic model-based segmentation of 3-Dneuroradiological data sets. IEEE Trans. Med. Imaging, 18, 828–39 (1999).

    Article  Google Scholar 

  17. Griffin, L.D.: The intrinsic geometry of the cerebral cortex. J. Theor. Biol., 166, 261–73 (1994).

    Article  Google Scholar 

  18. Haker, S., et al.: Conformal surface parameterization for texture mapping. IEEE Trans. Visualization and Computer Graphics, 6, 181–189 (2000).

    Article  Google Scholar 

  19. Yu, P., et al.: Shape analysis of neuroanatomical structures based on spherical wavelets. 11th Annual Meeting of the Organization for Human Brain Mapping (OHBM), Toronto, Canada (2005).

    Google Scholar 

  20. Van Essen, D.C., et al.: Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Adv. Neurol., 84, 23–34 (2000).

    Google Scholar 

  21. Brechbuehler, C.: Description and analysis of 3-D shapes by parametrization of closed surfaces. Diss., ETH Zurich, (1995).

    Google Scholar 

  22. Thompson, P.M., Schwartz, C., Toga, A.W.: High-resolution random mesh algorithms for creating a probabilistic 3Dsurf ace atlas of the human brain. Neuroimage, 3, 19–34 (1996).

    Article  Google Scholar 

  23. Lohmann, G., et al.: LIPSIA—a new software system for the evaluation of functional magnetic resonance images of the human brain. Comput. Med. Imaging Graph., 25, 449–57 (2001).

    Article  Google Scholar 

  24. Quicken, M., Brechbühler, C., Hug, J., Blattmann, H., Szekely, G.: Parameterization of closed surfaces for parametric surface description. Computer Vision and Pattern Recognition CVPR (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Hübsch, T., Tittgemeyer, M. (2008). Multi-Scale Analysis of Brain Surface Data. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_23

Download citation

Publish with us

Policies and ethics