Skip to main content

Summary

A model for the generation of action potentials by a neuron is presented. This model is based on standard and commonly accepted properties of excitable cells (neurons). The novelty is that under quite natural assumptions the generation of action potentials is described as a special case of a general model for systems generating recurrent biological events. A formula for a density function of the membrane potential distribution in the firing times of the neuron is derived. An analysis of time intervals between spikes is of special interest. Three different interspike interval distributions are found, where one of them is close to the stable distribution. It is consistent with the well-known hypothesis that stable interspike intervals form part of the neural chain in which information is being preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chacron, M.J., Linder, B., Longtin, A.: Noise shaping by interval correlations increases information transfer. Phys. Rev. Lett., 92, 080601 (2004).

    Article  Google Scholar 

  2. Geisler, C., Goldberg, A.: A stochastic model of the repetitive activity of neurons. Biophys. J., 6, 53–69 (1966).

    Google Scholar 

  3. Gradshteyn , I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (1980).

    MATH  Google Scholar 

  4. Hill, A.: Excitation and accommodation in nerve. Proc. R. Soc. Lond B Biol. Sci., 119, 305–355 (1936).

    Google Scholar 

  5. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.), 117, 500–544 (1952).

    Google Scholar 

  6. Holden, A.V.: A note on convolution and stable distributions in the nervous system. Biol. Cybernetics, 20, 171–173 (1975).

    Article  Google Scholar 

  7. Jolivet, R., Lewis, T.J., Gerstner, W.: Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol., 92, 959–976 (2004).

    Article  Google Scholar 

  8. Lapicque, L.: Recherches quantitatives sur léxcitation electrique des nerfs traitee comme une polarization. J. Physiol. Pathol. Gen., 9, 620–635 (1907).

    Google Scholar 

  9. Lasota, A., Mackey, M.C., Tyrcha, J.: The statistical dynamics of recurrent biological events. J. Math. Biol., 30, 775–800 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  10. LĂ©vy, P.: Sur certains processus stochastiques homogenes. Comp. Math., 7, 283 (1940).

    Google Scholar 

  11. McCulloch, J.H., Panton, D.B.: In: Adler, R.J., Feldman, R.E., Kim, J.R.: A Practical Guide to Heavy Tails: Statistical Techniques and Applications. Birkhäuser, Boston, 501–507 (1998).

    Google Scholar 

  12. Neher, E., Sakmann, B.: Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature (Lond.), 260, 779–802 (1976).

    Article  Google Scholar 

  13. Nolan, J.P.: Stable Distributions. Math/Stat Department, American University, Washington, D.C. (2005).

    Google Scholar 

  14. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994).

    MATH  Google Scholar 

  15. Stein, R.: A theoretical analysis of neuronal variability. Biophys. J., 5, 173–194 (1965).

    Google Scholar 

  16. Tuckwell, H.: Introduction to Theoretical Neurobiology. Cambridge University Press, London (1988).

    Google Scholar 

  17. Tuckwell, H.: Stochastic Processes in the Neuroscience. Society for Industrial and Applied Mathematics, Philadelphia, PA (1989).

    Google Scholar 

  18. Wikipedia, the free encyclopedia.

    Google Scholar 

  19. Wolfram, S.: The Mathematica Book. Cambridge University Press, London (1999).

    MATH  Google Scholar 

  20. Zaliapin, I.V., Kagan, Y.Y., Schoenberg, F.P.: Approximating the distribution of Pareto sums. Pure Appl. Geophys., 162, 1187–1228 (2005).

    Article  Google Scholar 

  21. Zolotarev, V.M.: One-Dimensional Stable Distributions. Amer. Math. Soc. Providence, RI, 284 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Tyrcha, J. (2008). Dynamics of Integrate-and-Fire Models. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_20

Download citation

Publish with us

Policies and ethics