Skip to main content

Dynamics of Neural Fields with Distributed Transmission Speeds

  • Chapter
Mathematical Modeling of Biological Systems, Volume II

Summary

We consider the continuous field model of neural populations with the addition of a distribution of transmission speeds. The speed distribution arises as a result of the natural variability of the properties of axons, such as their degree of myelination. We analyze the stability and bifurcations of equilibrium solutions for the resulting field dynamics. Using a perturbation approach, we show that the speed distribution affects the frequency of bifurcating periodic solutions and the phase speed of traveling waves. The theoretical findings are illustrated by numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J., 12, 1–24 (1972).

    Article  Google Scholar 

  2. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybernetics, 27, 77–87 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  3. Bressloff, P.C., Coombes, S.: Physics of the extended neuron. Int. J. Mod. Phys. B, 11, 2343–2392 (1997).

    Article  Google Scholar 

  4. Gerstner, W.: Time structure of the activity in neural network models. Phys. Rev. E, 51, 738–758 (1995).

    Article  Google Scholar 

  5. Jirsa, V.K.: Connectivity and dynamics of neural information processing. Neuroinformatics, 2, 183–204 (2004), large review paper.

    Google Scholar 

  6. Nunez, P.L.: Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York, Oxford (1995).

    Google Scholar 

  7. Pinto, D.J., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks: I. Travelling fronts and pulses. SIAM J. Appl. Math., 62, 206–225 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  8. Atay, F.M., Hutt, A.: Stability and bifurcations in neural fields with finite propagation speed and general connectivity. SIAM J. Appl. Math., 65, 644–666 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. Hutt, A., Atay, F.M.: Analysis of nonlocal neural fields for both general and gammadistributed connectivities. Physica D, 203, 30–54 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  10. Bringuier, V., Chavane, F., Glaeser, L., Fregnac, Y.: Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science, 283, 695–699 (1999).

    Article  Google Scholar 

  11. Girard, P., Hupe, J.M., Bullier, J.: Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol., 85, 1328–1331 (2001).

    Google Scholar 

  12. Freeman,W.J.: Tutorial on neurobiology: From single neurons to brain chaos. International Journal of Bifurcation and Chaos, 2, 451–482 (1992).

    Article  MATH  Google Scholar 

  13. Hutt, A., Bestehorn, M., Wennekers, T.: Pattern formation in intracortical neuronal fields. Network: Comput. Neural Syst., 14, 351–368 (2003).

    Article  Google Scholar 

  14. Coombes, S., Lord, G.J., Owen, M.R.: Waves and bumps in neuronal networks with axodendritic synaptic interactions. Physica D, 178, 219–241 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. Atay, F.M.: Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett., 91, 094101 (2003).

    Article  Google Scholar 

  16. Jirsa, V.K., Ding, M.: Will a large complex system with time delays be stable? Phys. Rev. Lett., 93, 070602 (2004).

    Article  Google Scholar 

  17. Atay, F.M., Hutt, A.: Neural fields with distributed transmission speeds and non-local feedback delays. SIAM J. Appl. Dynamical Systems, 5(4), 670–698 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Atay, F.M., Hutt, A. (2008). Dynamics of Neural Fields with Distributed Transmission Speeds. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_18

Download citation

Publish with us

Policies and ethics