Skip to main content

Crystalline representations and F-crystals

  • Chapter

Part of the Progress in Mathematics book series (PM,volume 253)

Summary

Following ideas of Berger and Breuil, we give a new classification of crystalline representations. The objects involved may be viewed as local, characteristic 0 analogues of the “shtukas” introduced by Drinfeld. We apply our results to give a classification of p-divisible groups and finite flat group schemes, conjectured by Breuil, and to show that a crystalline representation with Hodge-Tate weights 0, 1 arises from a p-divisible group, a result conjectured by Fontaine.

Keywords

  • Group Scheme
  • Full Subcategory
  • Divided Power
  • Coherent Sheaf
  • Unique Lift

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

To Vladimir Drinfeld on his 50th birthday.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-8176-4532-8_7
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-0-8176-4532-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. André, Différentielles non commutatives et théorie de Galois différentielle ou aux différences, Ann. Sci. École Norm. Sup., 34 (2001), 685–739.

    MATH  Google Scholar 

  2. F. Baldassarri, Comparaison entre la cohomologie algébrique et la cohomologie p-adique rigide à coefficients dans un module différentiel II: Cas des singularités régulières à plusieurs variables, Math. Ann., 280 (1998), 417–439.

    CrossRef  MathSciNet  Google Scholar 

  3. P. Berthelot, L. Breen, and W. Messing, Théorie de Dieudonné cristalline II, Lecture Notes in Mathematics, Vol. 930, Springer-Verlag, Berlin, New York, Heidelberg, 1982.

    MATH  Google Scholar 

  4. L. Berger, Équations différentielles p-adiques et (ϕ, N)-modules filtrés, preprint, 2004.

    Google Scholar 

  5. L. Berger, Limites des représentations cristallines, Compositio Math., 140 (2004), 1473–1498.

    MATH  Google Scholar 

  6. L. Berger, Représentations p-adiques et équations différentielles, Invent. Math., 148-2 (2002), 219–284.

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. C. Breuil, Une application du corps des normes, Compositio Math., 117 (1999), 189–203.

    MATH  CrossRef  MathSciNet  Google Scholar 

  8. C. Breuil, Groupes p-divisibles, groupes finis et modules filtrés, Ann. Math., 152 (2000), 489–549.

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. C. Breuil, Integral p-adic Hodge theory, in S. Usui, ed., Algebraic Geometry 2000, Azumino, Advanced Studies in Pure Mathematics, Vol. 36, Mathematical Society of Japan, Tokyo, 2002, 51–80.

    Google Scholar 

  10. C. Breuil, Schémas en groupes et corps des normes, unpublished manuscript, 1998.

    Google Scholar 

  11. P. Colmez and J. M. Fontaine, Construction des représentations p-adiques semistables, Invent. Math., 140-1 (2000), 1–43.

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. P. Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu, 1 (2002), 331–439.

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. A. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Études Sci. Publ. Math., 82 (1995), 5–96.

    MATH  CrossRef  Google Scholar 

  14. P. Deligne, Equations Différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin, Heidelberg, New York, 1970.

    MATH  Google Scholar 

  15. G. Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc., 12 (1999), 117–144.

    MATH  CrossRef  MathSciNet  Google Scholar 

  16. J.-M. Fontaine, Représentations p-adiques des corps locaux, in P. Carier, ed., Grothendieck Festschrift, Vol. 2, Progress in Mathematics, Vol. 87, Birkhäuser, Basel, 1991, 249–309.

    Google Scholar 

  17. J. M. Fontaine, Représentations p-adiques semi-stables, in Périodes p-adiques, Astérisque, Vol. 223, Société Mathématique de France, Paris, 1994, 113–184.

    Google Scholar 

  18. J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, in Journées de Géométrie Algébrique de Rennes (Orsay 1978), Astérisque, Vol. 65, Société Mathématique de France, Paris, 1979, 3–80.

    Google Scholar 

  19. A. Genestier and V. Lafforgue, Théories de Fontaine et Fontaine-Laffaille en égale caractéristique, preprint, 2004.

    Google Scholar 

  20. G. Laffaille, Groupes p-divisibles et modules filtrés: Le cas peu ramifié, Bull. Soc. Math. France, 108 (1980), 187–206.

    MATH  MathSciNet  Google Scholar 

  21. M. Lazard, Les zéros des fonctions analytiques d’une variable sur un corps valué complet, Inst. Hautes Études Sci. Publ. Math., 14 (1962), 47–75.

    CrossRef  MathSciNet  Google Scholar 

  22. D. Kazhdan, An introduction to Drinfeld’s “Shtuka,” in A. Borel and W. Casselman, eds., Automorphic Forms, Representations and L-Functions II, Proceedings of Symposia in Pure Mathematics, Vol. 33, American Mathematical Society, Providence, RI, 1979, 347–356.

    Google Scholar 

  23. N. Katz, Serre-Tate local moduli, in J. Giraud, ed., Surfaces Algébriques: Séminaire de Géométrie Algébriques d’Orsay 1976–1978, Lecture Notes in Mathematics, Vol. 868, Springer-Verlag, Berlin, 1981, 128–202.

    Google Scholar 

  24. N. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math., 39 (1970), 175–232.

    MATH  CrossRef  Google Scholar 

  25. K. S. Kedlaya, Ap-adic local monodromy theorem, Ann. Math., 160-1 (2004), 93–184.

    MATH  MathSciNet  CrossRef  Google Scholar 

  26. K. S. Kedlaya, Slope filtrations revisited, math.NT/0504204, 2005; Documenta Math., to appear.

    Google Scholar 

  27. M. Kisin, Moduli of finite flat group schemes and modularity, preprint, 2004.

    Google Scholar 

  28. W. Messing, The Crystals Associated to Barsotti-Tate Groups: With Applications to Abelian Schemes, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin, New York, Heidelberg, 1972.

    MATH  Google Scholar 

  29. B. Mazur and W. Messing, Universal Extensions and One Dimensional Crystalline Cohomology, Lecture Notes in Mathematics, Vol. 370, Springer, Berlin, New York, Heidelberg, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Kisin, M. (2006). Crystalline representations and F-crystals. In: Ginzburg, V. (eds) Algebraic Geometry and Number Theory. Progress in Mathematics, vol 253. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4532-8_7

Download citation