Skip to main content

Mechanical Properties of Human Mineralized Connective Tissues

  • Chapter
Modeling of Biological Materials

Abstract

Experimental work has to be tightly linked with modeling. In fact, successful modeling requires firstly comparison with experiments in order to verify its predictions or to set its range of validity. Secondly, experiments measuring the mechanical properties of tissues are needed as input to calibrate mechanical models of organs that can be used to run simulations in silico. In this chapter we wish to provide a comprehensive literature review covering the mechanical characterization of hard tissues, in particular compact bone, trabecular bone and dentine

Elastic and strength properties of such tissues are carefully reviewed, together with fracture mechanics properties when available. Properties obtained from different measurement devices are gathered and compared with each other. The anisotropy and the inelasticity of the mechanical properties of hard tissues is particularly stressed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akkus, O., Jepsen, K.J., and Rimnac, C.M., Microstructural aspects of the fracture process in human cortical bone, J. Mat. Sci., 35 (2000), 6065–6074.

    Google Scholar 

  2. Apicella, A., Liguori, A., Masi, E., and Nicolais, L., Thick laminate composite modeling in total hip replacement, in Experimental Techniques and Design in Composite Materials Sheffield Academis Press, (1994), pp. 323–338.

    Google Scholar 

  3. Ascenzi, A., Baschieri, P., and Bonucci, E., The bending properties of single osteons. J. Biomech., 23 (1990), 763–771.

    Google Scholar 

  4. Ascenzi, A. and Bonucci, E., The compressive properties of single osteons. Anatom. Rec., 161 (1968), 377–391.

    Google Scholar 

  5. Ascenzi, A. and Bonucci, E., The tensile properties of single osteons. Anatom. Rec, 158 (1967), 375–386.

    Google Scholar 

  6. Ascenzi, A., Benvenuti, A., Bigi, A., Foresti, E., Koch, M.H., Mango, F., Ripamonti, A., and Roveri, N., X-ray diffraction on Cyclically loaded osteons. Calcif. Tissue Int., 62 (1998), 266–273.

    Google Scholar 

  7. Ashman, R.B., Cowin, S.C., Van Buskirk, W.C., and Rice, J.C., A continuous wave technique for the measurement of the elastic properties of cortical bone. J. Biomech., 17 (1984), 349–361.

    Google Scholar 

  8. Augat, P., Link, T., Lang, T.F., Lin, J.C., Majumdar, S., and Genant, H.K., Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations. Med. Eng. Phys., 2 (1998), 124–131.

    Google Scholar 

  9. Balooch, M., Wu-Magidi, I.C., Balazs, A., Lundkvist, A.S., Marshall, S.J., Marshall, G.W., Siekhaus, W.J., and Kinney, J.H., Viscoelastic properties of demineralized human dentin measured in water with atomic force microscope (AFM)-based indentation. J. Biomed. Mater. Res., 15 (1998), 539–544.

    Google Scholar 

  10. Balooch, C., Marshall, G.W., Marshall, S.J., Warren, O.L., Asif, S.A., and Balooch, M., Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J. Biomech., 37 (2004), 1223–1232.

    Google Scholar 

  11. Bargren, J.H., Andrew, C., Bassett, L., and Gjelsvik, A., Mechanical properties of hydrated cortical bone. J. Biomech., 7 (1974), 239–245.

    Google Scholar 

  12. Bayraktar, H.H. and Keaveny, T.M., Mechanisms of uniformity of yield strains for trabecular bone. J. Biomech., 37 (2004), 1671–1678.

    Google Scholar 

  13. Behiri, J.C. and Bonfield, W., Fracture mechanics of bone—the effects of density, specimen thickness and crack velocity on longitudinal fracture. J. Biomech., 17 (1984), 25–34.

    Google Scholar 

  14. Bonfleld, W. and Datta, P.K., Fracture toughness of compact bone. J. Biomech., 9 (1976), 131–134.

    Google Scholar 

  15. Bonfleld, W. and Grynpas, M.D., Anisotropy of the Young’s modulus of bone. Nature, 270 (1977), 453–454.

    Google Scholar 

  16. Boskey, A., Bone mineral crystal size. Osteoporos. Int., 14 (2003), 16–21.

    Google Scholar 

  17. Boyde, A. and Jones, S.J., Scanning electron microscopy of bone: Instrument, specimen, and issues. Microscopy Res. Tech., 33 (1998), 92–120.

    Google Scholar 

  18. Bowen, R.L. and Rodriguez, M.S., Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J. Am. Dent. Assoc, 64 (1962), 378–387.

    Google Scholar 

  19. Bromage, T.G., Goldman, H.M., McFarlin, S.C., Warshaw, J., Boyde, A., and Riggs, C.M., Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat. Rec. B. New Anat., 274 (2003), 157–168.

    Google Scholar 

  20. Brown, S.J., Pollintine, P., Powell, D.E., Davie, M.W.J., and Sharp, C.A., Regional differences in mechanical and material properties of femoral head cancellous bone in health and osteoarthritis. Calcif. Tissue Int., 71 (2002), 227–234.

    Google Scholar 

  21. Bumrerraj, S. and Katz, J.L., Scanning acoustic microscopy study of human cortical and trabecular bone. Ann. Biomed. Eng., 29 (2001), 1034–1042.

    Google Scholar 

  22. Burr, D.B., Schaffler, M.B., and Frederickson, R.G., Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J. Biomech., 21 (1988) 939–945.

    Google Scholar 

  23. Cagidiaco, M.C. and Ferrari, M., Organization of the matrix. In: Bonding to dentin. Livorno: O. Debatte and F. Ed. (1995), 11–26.

    Google Scholar 

  24. Carter, D.R. and Hayes, W.C., The compressive behavior of bone as two-phase porous structure. J. Bone Joint Surg., 59 (1977), 954–962.

    Google Scholar 

  25. Carter, D.R. and Caler, W.E., Cycle-dependent and time-dependent bone fracture with repeated loading. J. Biomech. Eng., 105 (1983), 166–170.

    Google Scholar 

  26. Cassidy, J.J., Hiltner, A., and Baer, E., Hierarchical structure of the intervertebral disc. Connect Tissue Res., 1 (1989), 75–88.

    Google Scholar 

  27. Causa, F., Manto, L., Borzacchiello, A., De Santis, R., Netti, P.A., Ambrosio, L., and Nicolais, L., Spatial and structural dependence of mechanical properties of porcine intervertebral disc. J. Mater. Sci. Mater. Med., 12 (2002), 1277–1280.

    Google Scholar 

  28. Charras, G.T., Lehenkari, P.P., and Horton, M.A., Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy., 86 (2001), 85–95.

    Google Scholar 

  29. Choi, K., Kuhn, J.L., Ciarelli, M.J., and Goldstein, S.A., The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J. Biomech., 11 (1990), 1103–1113.

    Google Scholar 

  30. Choi, K. and Goldstein, S.A., A comparison of the fatigue behavior of human trabecular and cortical bone tissue. J. Biomech., 25 (1992), 1371–1381.

    Google Scholar 

  31. Ciarelli, T.E., Fyhrie, D.P., Schaffler, M.B., and Goldstein, S.A., Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J. Bone Miner. Res., 15 (2000), 32–40.

    Google Scholar 

  32. Claes, L.E., Wilke, H.J., and Kiefer, H., Osteonal structure better predicts tensile strength of healing bone than volume fraction. J. Biomech., 28 (1995), 1377–1390.

    Google Scholar 

  33. Courtney, A.C., Hayes, W.C., and Gibson, L.J., Age-related differences in post-yield damage in human cortical bone. Experiment and model. J. Biomech., 29 (1996), 1463–1471.

    Google Scholar 

  34. Cowin, S.C. and Turner, C.H., On the relationship between the orthotropic Young’s moduli and fabric. J. Biomech., 25 (1992), 1493–1494.

    Google Scholar 

  35. Cowin, S.C., Bone poroelasticity. J. Biomech., 32 (1999), 217–238.

    Google Scholar 

  36. Cowin, S.C., The relationship between the elasticity tensor and the fabric tensor. Mech. Mater., 4 (1985), 134–147.

    Google Scholar 

  37. Cowin, S.C., Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng., 1 (1986), 83–88.

    Google Scholar 

  38. Craig, R.G. and Peyton, F.A., Elastic and mechanical properties of human dentin. J. Dent. Res., 37 (1958), 710–718.

    Google Scholar 

  39. Craig, R.G. and Peyton, F.A., Thermal conductivity of teeth structures, dentin cements, and amalgam. J. Dent. Res. 40 (1961), 411–418.

    Google Scholar 

  40. Cuppone, M., Seedhom, B.B., Berry, E., Ostell, A.E., The longitudinal Young’s modulus of cortical bone in the midshaft of human femur and its correlation with CT scanning data. Calcif. Tissue Int., 74 (2004), 302–309.

    Google Scholar 

  41. Currey, J.D., Stress concentrations in bone. QJ. Microsc. Sci., 103 (1962), 111–133.

    Google Scholar 

  42. Currey, J., Sacrificial bonds heal bone. Nature, 414 (2001), 699.

    Google Scholar 

  43. Currey, J.D. and Butler, G., The mechanical properties of bone tissue in children. J. Bone Joint Surg. Am., 57 (1975), 810–814.

    Google Scholar 

  44. Dabestani, M. and Bonfield, W., Elastic and anelastic microstrain measurement in human cortical bone. In: Implant Materials in Biofunction de Putter, C., de Lange, G.L., de Groot, K., Lee, A.J.C. Eds. Elsevier Science, Amsterdam (1988), 435–440.

    Google Scholar 

  45. De Santis, R., Mollica, F., Prisco, D., Rengo, S., Ambrosio, L., and Nicolais, L., A 3-D analysis of mechanically stressed dentinadhesive-composite interfaces using X-ray micro-CT. Biomaterials, 26 (2005), 257–270.

    Google Scholar 

  46. De Santis, R., Anderson, P., Tanner, K.E., Ambrosio, L., Nicolais L., Bonfield, W., and Davis, G.R., Bone fracture analysis on the short rod chevron-notch specimens using the X-ray computer micro-tomography. J. Mat. Sci. Mat. Med., 11 (2000), 629–636.

    Google Scholar 

  47. Deligiann, D.D., Missirlis, Y.F., Tanner, K.E., and Bonfield, W., Mechanical behavior of trabecular bone of the human femoral head in females. J. Mater. Sci. Mat. Med., 2 (1991), 168–175.

    Google Scholar 

  48. Deligiann, D.D., Maris, A., and Missirlis, Y.F., Stress relaxation behavior of trabecular bone specimens. J. Biomech., 27 (1994), 1469–1476.

    Google Scholar 

  49. Ding, M., Dalstra, M., Danielsen, C.C., Kabel, J., Hvid, I., and Linde, F., Age variations in the properties of human tibial trabecular bone. J. Bone Joint Surg. Br., 6 (1997), 995–1002.

    Google Scholar 

  50. Dowling, N.E., Mechanical Behavior of Materials. PrenticeHall, Englewood Cliffs, NJ (1996).

    Google Scholar 

  51. Duncanson, M.G., Jr. Korostoff, E., Compressive viscoelastic properties of human dentin: I. Stress-relaxation behavior. J. Dent. Res., 54 (1975), 1207–1212.

    Google Scholar 

  52. El Mowafy, O.M. and Watts, D.C., Fracture toughness of human dentin. J. Dent. Res., 65 (1986), 677–681.

    Google Scholar 

  53. Erdemt, U., Instrument science and technology: Force and weight measurement, J. Phys E: Sci. Instrum., 15 (1982), 857–872.

    Google Scholar 

  54. Evans, F.G. and Vincentelli, R., Relation of collagen fibers orientation to some mechanical properties of human cortical bone. J. Biomech., 2 (1969), 63–71.

    Google Scholar 

  55. Fan, Z. and Rho, J.Y., Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J. Biomed. Mater. Res. A, 67 (2003), 208–214.

    Google Scholar 

  56. Fantner, G.E., Hassenkam, T., Kindt, J.H., Weaver, J.C., Birkedal, H., Pechenik, L., Cutroni, J.A., Cidade, G.A.G., Stucky, G.D., Morse, D.E., and Hansma, P.K., Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature, 4 (2005), 612–616.

    Google Scholar 

  57. Fong, H., Sarikaya, M., White, S.N., and Snead, M.L., Nanomechanical properties profiles across dentin-enamel junction of human incisor teeth. Mater. Sci. Eng. C., 7 (2000), 119–128.

    Google Scholar 

  58. Forss, H., Seppa, L., and Lappalainen, R., In vitro abrasion resistance and hardness of glass-ionomer cements. Dent. Mater., 7 (1991), 36–39.

    Google Scholar 

  59. Galante, J., Rostoker, W., and Ray, R.D., Physical properties of trabecular bone. Calcif Tissue Res., 5 (1970), 236–246.

    Google Scholar 

  60. Garberoglio, R. and Brannstrom, M., Scanning electron microscopic investigation of human dentinal tubules. Arch. OralBiol., 21 (1976), 355–362.

    Google Scholar 

  61. Giesen, E.B., Ding, M., and Dalstra, M., and van Eijden, T.M., Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J. Biomech., 34 (2001), 799–803.

    Google Scholar 

  62. Gilmore, R.S. and Katz, J.L., Elastic properties of apatites, J. Mat. Sci., 17 (1982), 1131–1141.

    Google Scholar 

  63. Goldstein, S.A., Wilson, D.L., Sonstegard, D.A., and Matthews, L.S., The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J. Biomech., 12 (1983), 965–969.

    Google Scholar 

  64. Guo, X.E., Liang, L.C., and Goldstein, S.A., Micromechanics of osteonal cortical bone fracture. J. Biomech. Eng., 120 (1998), 112–117.

    Google Scholar 

  65. Habelitz, S., Marshall, G.W., Jr., Balooch, M., and Marshall, S.J., Nanoindentation and storage of teeth. J. Biomech., 35 (2002), 995–998.

    Google Scholar 

  66. Habelitz, S., Marshall, S.J., Marshall, G.W., Jr., and Balooch, M., Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral Biol, 46 (2001), 173–183.

    Google Scholar 

  67. Hara, T., Takizawa, M., Sato, T., and Ide, Y., Mechanical properties of buccal compact bone of the mandibular ramus in human adults and children: Relationship of the elastic modulus to the direction of the osteon and the porosity rati. Bull. Tokyo Dent. Coll., 39 (1998), 47–55.

    Google Scholar 

  68. Hassan, R., Caputo, A.A., and Bunshah, R.F., Fracture toughness of human enamel. J. Dent. Res., 60 (1981), 820–827.

    Google Scholar 

  69. Hengsberger, S., Kulik, A., and Zysset, P., Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone, 30 (2002), 178–184.

    Google Scholar 

  70. Hogan, H.A., Micromechanics modeling of Haversian cortical bone properties. J. Biomech., 25 (1992), 549–556.

    Google Scholar 

  71. Homminga, J., McCreadie, B.R., Ciarelli, T.E., Weinans, H., Goldstein, S.A., and Huiskes, R., Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone, 30 (2002), 759–764.

    Google Scholar 

  72. Hvid, I. and Hansen, S.L., Trabecular bone strength patterns at the proximal tibial epiphysis. J. Orthop. Res., 4 (1985), 464–472.

    Google Scholar 

  73. Huiskes, R. Ruimerman, R., van Lenthe, G.H., and Janssen, J.D., Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature, 405 (2000), 704–706.

    Google Scholar 

  74. Imbeni, V., Nalla, R.K., Bosi, C., Kinney, J.H., and Ritchie, R.O., In vitro fracture toughness of human dentin. J. Biomed. Mater. Res. A, 66 (2003), 1–9.

    Google Scholar 

  75. Ito, S., Saito, T., Tay, F.R., Carvalho, R.M., Yoshiyama, M., and Pashley, D.H., Water content and apparent stiffness of non-caries versus caries-affected human dentin. J. Biomed. Mater. Res. B Appl. Biomater., 72 (2005), 109–116.

    Google Scholar 

  76. Iwamoto, N. and Ruse, N.D., Fracture toughness of human dentin. J. Biomed. Mater. Res. A, 66 (2003), 507–512.

    Google Scholar 

  77. Jantarat, J., Palamara, J.E., Lindner, C., and Messer, H.H., Timedependent properties of human root dentin. Dent. Mater., 18 (2002), 486–493.

    Google Scholar 

  78. Jasiuk, I. and Ostoja-Starzewski, M., Modeling of bone at a single lamella level. Biomech. Model Mechanohiol., 3 (2004), 67–74.

    Google Scholar 

  79. Jepsen, K.J. and Davy, D.T., Comparison of damage accumulation measures in human cortical bone. J. Biomech., 30 (1997), 891–894.

    Google Scholar 

  80. Kabel, J., van Rietbergen, B., Odgaard, A., and Huiskes, R., Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone, 25 (1999), 481–486.

    Google Scholar 

  81. Kafka, V. and Jirova, J., A structural mathematical model for the viscoelastic anisotropic behavior of trabecular bone. Biorheology, 20 (1983), 795–805.

    Google Scholar 

  82. Katz, J.L. and Meunier, A., Material properties of single osteons and osteonic lamellae using high frequency scanning acoustic microscopy. In: Bone Structure and Remodeling. Odgaard, A., Weinas, H., Eds. Word Scientific, Amsterdam (1994), 157–165.

    Google Scholar 

  83. Katz, J.L., Anisotropy of Young’s modulus of bone. Nature, 283 (1980), 106–107.

    Google Scholar 

  84. Keaveny, T.M. and Hayes, W.C., A 20-year perspective on the mechanical properties of trabecular bone. J. Biomech. Eng. 115 (1993), 534–542.

    Google Scholar 

  85. Keaveny, T.M., Morgan, E.F., Niebur, G.L., and Yeh, O.C., Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng., 3 (2001), 307–333.

    Google Scholar 

  86. Kinney, J.H., Balooch, M., Marshall, S.J., Marshall, G.W., Jr., Weihs, T.P., Hardness and Young’s modulus of human peritubular and intertubular dentine. Arch. Oral Biol, 41 (1996), 9–13.

    Google Scholar 

  87. Kinney, J.H., Balooch, M., Marshall, S.J., Marshall, G.W., Jr., and Weihs, T.P., Atomic force microscope measurements of the hardness and elasticity of peritubular and intertubular human dentin. J. Biomech. Eng., 118 (1996), 133–135.

    Google Scholar 

  88. Kinney, J.H., Balooch, M., Marshall, G.W., and Marshall, S.J., A micromechanics model of the elastic properties of human dentine. Arch. Oral Biol., 44 (1999), 813–822.

    Google Scholar 

  89. Kinney, J.H., Marshall, S.J., and Marshall, G.W., The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature. Crit. Rev. Oral Biol. Med., 14 (2003), 13–29.

    Google Scholar 

  90. Kinney, J.H., Gladden, J.R., Marshall, G.W., Marshall, S.J., So, J.H., and Maynard, J.D., Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. J. Biomech., 37 (2004), 437–441.

    Google Scholar 

  91. Kishen, A., Ramamurty, U., and Asundi, A., Experimental studies on the nature of property gradients in the human dentine. J. Biomed. Mater. Res., 51 (2000), 650–659.

    Google Scholar 

  92. Konishi, N., Watanabe, L.G., Hilton, J.F., Marshall, G.W., Marshall, S.J., and Staninec, M., Dentin shear strength: Effect of distance from the pulp. Dent. Mater., 18 (2002), 516–520.

    Google Scholar 

  93. Kopperdahl, D.L. and Keaveny, T.M., Yield strain behavior of trabecular bone. J. Biomech., 31 (1998), 601–608.

    Google Scholar 

  94. Kuboky, Y. and Mechanic, G.L., Comparative molecular distribution of cross-link in bone and dentine collagen. Structure-function relationship. Calcif. Tissue Int., 34 (1982), 306–308.

    Google Scholar 

  95. Lakes, R.S., Nakamura, S., Behiri, J.C., and Bonfield, W., Fracture mechanics of bone with short cracks. J. Biomech., 23 (1990), 967–975.

    Google Scholar 

  96. Lang, H.P., Hegner, M., and Gerber, C., Cantilever array sensors. Mater. Today, 8 (2005), 30–36.

    Google Scholar 

  97. Lenz, C. and Nackenhorst, U., A numerical approach to mechanosensation of bone tissue based on a micromechanical analysis of a single osteon. PAMM, 4 (2004), 342–343.

    Google Scholar 

  98. Lertchirakarn, V., Palamara, J.E., and Messer, H.H., Anisotropy of tensile strength of root dentin. J. Dent. Res., 80 (2001), 453–456.

    Google Scholar 

  99. Liebschner, M.A. and Keller, T.S., Hydraulic strengthening affects the stiffness and strength of cortical bone. Ann. Biomed. Eng. 33 (2005), 26–38.

    Google Scholar 

  100. Linde, F., Norgaard, P., Hvid, I., Odgaard, A., and Soballe, K., Mechanical properties of trabecular bone. Dependency on strain rate. J. Biomech., 24 (1991), 803–809.

    Google Scholar 

  101. Linde, F. and Sorensen, H.C., The effect of different storage methods on the mechanical properties of trabecular bone. J. Biomech., 26 (1993), 1249–1252.

    Google Scholar 

  102. Majumdar, S., Kothari, M., Augat, P., Newitt, D.C., Link, T.M., Lin, J.C., Lang, T., Lu, Y., and Genant, H.K., High-resolution magnetic resonance imaging: Three-dimensional trabecular bone architecture and biomechanical properties. Bone, 22 (1998), 445–454.

    Google Scholar 

  103. Marshall, G.W., Jr., Balooch, M., Gallagher, R.R., Gansky, S.A., and Marshall, S.J., Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J. Biomed. Mater. Res., 54 (2001), 87–95.

    Google Scholar 

  104. Marshall, S.J., Balooch, M., Habelitz, S., Balooch, G., Gallagher, R., and Marshall, G.W., The dentin-enamel junction-a natural, multilevel interface. J. Europ. Ceramic Soc, 23 (2003), 2897–2904

    Google Scholar 

  105. Martin, R.B. and Burr, D.B., A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage. J. Biomech., 15 (1982), 137–139.

    Google Scholar 

  106. Martin, B., Aging and strength of bone as a structural material. Calcif. Tissue Int., 53 Suppl 1 (1993), S34–S39.

    Google Scholar 

  107. McElhaney, J.H., Dynamic response of bone and muscle tissue. J. Appl. Physiol., 21 (1966), 1231–1236.

    Google Scholar 

  108. Mente, P.L. and Lewis, J.L., Experimental method for the measurement of the elastic modulus of trabecular bone tissue. J. Orthop. Res., 7 (1989), 456–461.

    Google Scholar 

  109. Meredith, N., Sherriff, M., Setchell, D.J., and Swanson, S.A., Measurement of the microhardness and Young’s modulus of human enamel and dentine using an indentation technique. Arch. Oral Biol. 41 (1996), 539–545. 256

    Google Scholar 

  110. Miguez, P.A., Pereira, P.N., Atsawasuwan, P., and Yamauchi, M., Collagen cross-linking and ultimate tensile strength in dentin. J. Dent Res., 83 (2004), 807–810.

    Google Scholar 

  111. Misch, C.E., Qu, Z., and Bidez, M.W., Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placements. J. Oral Maxillofac. Surg., 57 (1999), 700–706.

    Google Scholar 

  112. Morgan, E.F. and Keaveny, T.M., Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech., 5 (2001), 569–577.

    Google Scholar 

  113. Mosekilde, L., Mosekilde, L., and Danielsen, C.C., Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone, 2 (1987), 79–85.

    Google Scholar 

  114. Nalla, R.K., Kinney, J.H., and Ritchie, R.O., On the fracture of human dentin: Is it stressor strain-controlled? J. Biomed. Mater. Res.A, 67 (2003), 484–495.

    Google Scholar 

  115. Nalla, R.K., Imbeni, V., Kinney, J.H., Staninec, M., Marshall, S.J., and Ritchie, R.O., In vitro fatigue behavior of human dentin with implications for life prediction. J. Biomed. Mater. Res. A 66 (2003), 10–20.

    Google Scholar 

  116. Nalla, R.K., Kinney, J.H., Marshall, S.J., and Ritchie, R.O., On the in vitro fatigue behavior of human dentin: Effect of mean stress. J. Dent. Res., 83 (2004), 211–215.

    Google Scholar 

  117. Natali, A.N., and Hart, R.T., Mechanics of hard tissues, in Integrated Biomaterials Science, R. Barbucci, Ed. Kluwer Academic and Plenum, New York (2002) 459–489.

    Google Scholar 

  118. Nicholson, P.H., Muller, R., Lowet, G., Cheng, X.G., Hildebrand, T., Ruegsegger, P., van der Perre, G., Dequeker, J., and Boonen, S., Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone? Bone, 23 (1998), 425–431.

    Google Scholar 

  119. Nicholson, P.H.F., Cheng, X.G., Lowet, G., Boonen, S., Davie, M.W.J., Dequeker, J., and Van der Perre, G., Structural and material mechanical properties of human vertebral cancellous bone. Med. Eng. Phys., 19 (1997), 729–737.

    Google Scholar 

  120. Nicolais, L., Mechanics of composites (particulate and fiber polymeric laminate properties). Polym. Eng. Sci., 15 (1975), 137–149.

    Google Scholar 

  121. Norman, T.L., Vashishth, D., and Burr, D.B., Mode I fracture toughness of human bone. In: Advances in Bioengineering, Vanderby, R., Ed. ASME, New York (1991), pp. 361–364.

    Google Scholar 

  122. Norman, T.L., Vashishth, D., and Burr, D.B., Fracture toughness of human bone under tension. J. Biomech., 28 (1995), 309–320.

    Google Scholar 

  123. Norman, T.L., Nivargikar, S.V., and Burr, D.B., Resistance to crack growth in human cortical bone is greater in shear than in tension. J. Biomech., 29 (1996), 1023–1031.

    Google Scholar 

  124. Norman, T.L. and Wang, Z., Microdamage of human cortical bone: Incidence and morphology in long bones. Bone, 20 (1997), 375–379.

    Google Scholar 

  125. Okazaki, K., Nishimura, F., and Nomoto, S., Fracture toughness of human enamel. Shika Zairyo Kikai, 8 (1989), 382–387.

    Google Scholar 

  126. O’Mahony, A.M., Williams, J.L., Katz, J.O., and Spencer, P., Anisotropic elastic properties of cancellous bone from human edentulous mandible. Clin. Oral Impl. Res., 11 (2000), 415–421.

    Google Scholar 

  127. Ouyang, J., Yang, G.T., Wu, W.Z., Zhu, Q.A., and Zhong, S.Z., Biomechanical characteristics of human trabecular bone. Clin. Biomech. 12 (1997), 522–524.

    Google Scholar 

  128. Pashley, D.H., Agee, K.A., Wataha, J.C., Rueggeberg, F., Ceballos, L., Itou, K., Yoshiyama, M., Carvalho, R.M., and Tay, F.R., Viscoelastic properties of demineralized dentin matrix. Dent. Mater., 19 (2003), 700–706.

    Google Scholar 

  129. Rasmussen, S.T., Patchin, R.E., Scott, D.B., and Heuer, A.H., Fracture properties of human enamel and dentin. J. Dent. Res., 55 (1976), 154–164.

    Google Scholar 

  130. Raum, K., Jenderka, K.V., Klemenz, A., and Brandt, J., Multilayer analysis: Quantitative scanning acoustic microscopy for tissue characterization at a microscopic scale. IEEE Trans. Ultras Ferroelectr. Freq. Contr., 50 (2003), 507–516.

    Google Scholar 

  131. Reilly, D.T., Burstein, A.H., and Frankel, V.H., The elastic modulus for bone. J. Biomech., 7 (1974), 271–275.

    Google Scholar 

  132. Reilly, D.T. and Burstein, A.H., The elastic and ultimate properties of compact bone tissue. J. Biomech., 8 (1975), 393–405.

    Google Scholar 

  133. Renson, C.E. and Braden, M., Experimental determination of the rigidity modulus, Poisson’s ratio and elastic limit in shear of human dentine. Arch. Oral Biol, 20 (1975), 43–47.

    Google Scholar 

  134. Rho, J.Y., Ashman, R.B., and Turner, C.H., Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J. Biomech., 2 (1993), 111–119.

    Google Scholar 

  135. Rho, J.Y., Kuhn-Spearing, L., and Zioupos, P., Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys., 2 (1998), 92–102.

    Google Scholar 

  136. Rho, J.Y., Roy, M.E., 2nd, Tsui, T.Y., and Pharr, G.M., Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J. Biomed. Mater. Res., 45 (1999), 48–54.

    Google Scholar 

  137. Rho, J.Y., An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics, 8 (1996), 777–783.

    Google Scholar 

  138. Rohl, L., Larsen, E., Linde, F., Odgaard, A., and Jorgensen, J., Tensile and compressive properties of cancellous bone. J. Biomech. 12 (1991), 1143–1149.

    Google Scholar 

  139. Roy, M.E., Rho, J.Y., Tsui, T.Y., Evans, N.D., and Pharr, G.M., Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J. Biomed. Mater. Res., 44 (1999), 191–197.

    Google Scholar 

  140. Runkle, J.C. and Pugh, J., The micro-mechanics of cancellous bone. II. Determination of the elastic modulus of individual trabeculae by a buckling analysis. Bull. Hosp. Joint Dis., 36 (1975), 2–10.

    Google Scholar 

  141. Sano, H., Shono, T., Sonoda, H., Takatsu, T., Ciucchi, B., Carvalho, R., and Pashley, D.H., Relationship between surface area for adhesion and tensile bond strength-evaluation of a micro-tensile bond test. Dent. Mater, 10 (1994), 236–240.

    Google Scholar 

  142. Sano, H., Ciucchi, B., Matthews, W.G., and Pashley, D.H., Tensile properties of mineralized and demineralized human and bovine dentin. J. Dent. Res., 73 (1994), 1205–1211.

    Google Scholar 

  143. Schaffler, M.B., Choi, K., and Milgrom, C., Aging and matrix microdamage accumulation in human compact bone. Bone, 17 (1995), 521–525.

    Google Scholar 

  144. Schoenfeld, CM., Lautenschlager, E.P., and Meyer, P.R., Mechanical properties of human cancellous bone in the femoral head. Med. Biol. Engng., 12 (1974), 313–317.

    Google Scholar 

  145. Schwartz-Dabney, C.L., Dechow, P.C., Schwartz-Dabney, C.L., and Dechow, P.C., Variations in cortical material properties throughout the human dentate mandible. Am. J. Phys. Anthropol, 120 (2003), 252–277.

    Google Scholar 

  146. Sevostianov, I. and Kachanov, M., Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. J. Biomech., 33 (2000), 881–888.

    Google Scholar 

  147. Silver, F.H., Seehra, G.P., Freeman, J.W., and DeVore, D., Viscoelastic properties of young and old human dermis: A proposed molecular mechanism for elastic energy storage in collagen and elastin. J. Appl. Pol. Sci., 79 (2001), 134–142.

    Google Scholar 

  148. Simkin, A. and Robin, G., Fracture formation in differing collagen fiber pattern of compact bone. J. Biomech., 7 (1974), 183–188.

    Google Scholar 

  149. Skovoroda, A.R., Emelianov, S.Y., and O’Donnell, M., Tissue elasticity reconstruction based on ultrasonic displacement and strain images, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 42 (1995), 747–745.

    Google Scholar 

  150. Staninec, M., Marshall, G.W., Hilton, J.F., Pashley, D.H., Gansky, S.A., Marshall, S.J., and Kinney, J.H., Ultimate tensile strength of dentin: Evidence for a damage mechanics approach to dentin failure. J. Biomed. Mater. Res., 63 (2002), 342–345.

    Google Scholar 

  151. Tam, L.E. and Yim, D., Effect of dentine depth on the fracture toughness of dentine-composite adhesive interfaces. J. Dent., 25 (1997), 339–346.

    Google Scholar 

  152. Tesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., and Fratzl, P., Graded microstructure and mechanical properties of human crown dentin. Calcif Tissue Int., 69 (2001), 147–157.

    Google Scholar 

  153. Thompson, J.B., Kindt, J.H., Drake, B., Hansma, H.G., Morse, D.E., and Hansma, P.K., Bone indentation recovery time correlates with bond reforming time. Nature, 414 (2001), 773–776.

    Google Scholar 

  154. Turner, C.H., Rho, J., Takano, Y., Tsui, T.Y., and Pharr, G.M., The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J. Biomech., 32 (1999), 437–441.

    Google Scholar 

  155. Tyldesley, W.R., The mechanical properties of human enamel and dentine. Briti. Dent. J., 106 (1959), 269–278.

    Google Scholar 

  156. Ulrich, D., van Rietbergen, B., Weinans, H., and Ruegsegger, P., Finite element analysis of trabecular bone structure: A comparison of image-based meshing techniques. J. Biomech., 31 (1998), 1187–1192.

    Google Scholar 

  157. VanLenthe, G.H. and Huiskes, R., How morphology predicts mechanical properties of trabecular structures depends on intraspecimen trabecular thickness variations. J. Biomech., 9 (2002), 1191–1197.

    Google Scholar 

  158. Van Meerbeek, B., Willems, G., Celis, J.P., Roos, J.R., Braem, M., Lambrechts, P., and Vanherle, G., Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J. Dent. Res., 72 (1993), 1434–1442.

    Google Scholar 

  159. Van Rietbergen, B., Huiskes, R., Eckstein, F., and Ruegsegger, P., Trabecular bone tissue strains in the healthy and osteoporotic human femur. J. Bone Miner. Res., 18 (2003), 1781–1788.

    Google Scholar 

  160. Vashishth, D., Behiri, J.C., and Bonfield, W., Crack growth resistance in cortical bone: Concept of microcrack toughening. J. Biomech., 30 (1997), 763–769.

    Google Scholar 

  161. Veis, A., Dentin. In: Extracellular Matrix. Tissue Function, Vol. 1. Comper WD, The Netherlands (1996), 41–75.

    Google Scholar 

  162. Watanabe, L.G., Marshall, G.W.,Jr., and Marshall, S.J., Dentin shear strength: effects of tubule orientation and intratooth location. Dent. Mater., 12 (1996), 109–115.

    Google Scholar 

  163. Watts, D.C., el Mowafy, O.M., and Grant, A.A., Temperaturedependence of compressive properties of human dentin. J. Dent. Res. 66 (1987), 29–32.

    Google Scholar 

  164. Weiner, S. and Wagner, H.D., The material bone: Structuremechanical function relations. Ann. Rev. Mater. Sci. 28 (1998), 271–298.

    Google Scholar 

  165. Weyland, M. and Midgley, P.A., Electron tomography. Mater. Today, 7 (2004), 32–40.

    Google Scholar 

  166. Willems, G., Lambrechts, P., Braem, M., Celis, J.P., and Vanherle, G., A classification of dental composites according to their morphological and mechanical characteristics. Dent. Mater., 8 (1992), 310–319.

    Google Scholar 

  167. Willems, G., Celis, J.P., Lambrechts, P., Braem, M., and Vanherle, G., Hardness and Young’s modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. J. Biomed. Mater. Res., 27 (1993), 747–755.

    Google Scholar 

  168. Wolff, J., Das Gesetz der Transformation der Knochen. Published with support from the Royal Academy of Sciences in Berlin. A. Hirschwald, ed. Berlin, 1892. English trans. by P. Maquet and R. Furlong. The Law of Bone Remodeling. Belin, SpringerVerlag, Heidelberg (1986).

    Google Scholar 

  169. Xu, H.H., Smith, D.T., Jahanmir, S., Romberg, E., Kelly, J.R., Thompson, V.P., and Rekow, E.D., Indentation damage and mechanical properties of human enamel and dentin. J. Dent. Res., 77 (1998), 472–480.

    Google Scholar 

  170. Xu, J., Rho, J.Y., Mishra, S.R., and Fan, Z., Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique. J. Biomed. Mater. Res. A, 67 (2003), 719–726.

    Google Scholar 

  171. Yamamoto, E., Crawford, P.R., Chan, D.D., and Keaveny, T.M., Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J. Biomech. 39(10) (2006), 1812–1818.

    Google Scholar 

  172. Yamashita, J., Furman, B.R., Rawls, H.R., Wang, X., and Agrawal, C.M., The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone. J. Biomed. Mater. Res. 58 (2001), 47–53.

    Google Scholar 

  173. You, L.D., Weinbaum, S., Cowin, S.C., and Schaffler, M.B., Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. A Discov. Mol. Cell Evol. Biol., 278 (2004), 505–513.

    Google Scholar 

  174. Yu, Z. and Boseck, S., Scanning acoustic microscopy and its applications to material characterization. Rev. Modern Phys., 67 (1995), 863–891.

    Google Scholar 

  175. Zhang, N. and Grimm, M.J., Measurement of elastic moduli of individual trabeculae of vertebtrae using scanning acoustic microscopy. 2001 Bioengineering Conference ASME.Snowbird, Utah. 50 (2001), 283–284.

    Google Scholar 

  176. Zilch, H., Rohlmann, A., Bergmann, G., and Kolbel, R., Material properties of femoral cancellous bone in axial loading. Part II: Time dependent properties. Arch. Orthop. Trauma Surg., 97 (1980), 257–262.

    Google Scholar 

  177. Zioupos, P., Wang, X.T., and Currey, J.D., Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech., 29 (1996), 989–1002.

    Google Scholar 

  178. Zioupos, P., X, T.W., and Currey, J.D., The accumulation of fatigue microdamage in human cortical bone of two different ages in vitro. Clin. Biomech., 11 (1996), 365–375.

    Google Scholar 

  179. Zioupos, P., Currey, J.D., and Hamer, A.J., The role of collagen in the declining mechanical properties of aging human cortical bone. J. Biomed. Mater. Res., 45 (1999), 108–116.

    Google Scholar 

  180. Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E., and Goldstein, S.A., Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech., 32 (1999), 1005–1012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

De Santis, R., Ambrosio, L., Mollica, F., Netti, P., Nicolais, L. (2007). Mechanical Properties of Human Mineralized Connective Tissues. In: Mollica, F., Preziosi, L., Rajagopal, K.R. (eds) Modeling of Biological Materials. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4411-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4411-6_6

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4410-9

  • Online ISBN: 978-0-8176-4411-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics