Skip to main content

Inhibition of cardiac myocyte apoptosis by gp130-dependent cytokines

  • Chapter
Book cover Apoptosis in Cardiac Biology

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 5))

  • 95 Accesses

Abstract

In animal models and in patients with end-stage heart failure, a small fraction of cardiac myocytes undergoes programmed cell death (apoptosis) (1–4). In general, cardiac failure is preceded by a hypertrophic response of the myocardium, that allows the heart to maintain cardiac output despite a chronic increase in hemodynamic load. However, sustained hemodynamic overloading eventually causes a transition from hypertrophy to heart failure, characterized by chamber dilatation, progressive contractile dysfunction and impaired survival. The observation that the prevalence of apoptotic cardiomyocytes is increased in the failing heart but not during the initial stage of compensatory hypertrophy has given rise to the hypothesis that cardiac myocyte dropout by apoptosis may be one mechanism contributing to the progression of cardiac hypertrophy to heart failure (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996;226:316–327.

    Article  PubMed  CAS  Google Scholar 

  2. Li Z, Bing OHL, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997;272:H2313–H2319.

    PubMed  CAS  Google Scholar 

  3. Narula J, Haider N, Virmani R, di Salvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335:H82–H89.

    Article  Google Scholar 

  4. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–1141.

    Article  PubMed  CAS  Google Scholar 

  5. Bing OHL. Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overload. J Mol Cell Cardiol 1994;26:943–948.

    Article  PubMed  CAS  Google Scholar 

  6. Colucci WS. Apoptosis in the heart, N Engl J Med 1996;335:1224–1226.

    Article  PubMed  CAS  Google Scholar 

  7. Knowlton KU, Michel MC, Itani M, Shubeita HE, Ishihara K, Brown JH, Chien KR. The α. ia-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem 1993;268:15374–15380.

    PubMed  CAS  Google Scholar 

  8. Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990;265:20555–20562.

    PubMed  CAS  Google Scholar 

  9. Sadoshima J, Izumo S. Molecular characterization of angiotensin 11-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the ATi receptor subtype. Circ Res 1993;73:413–423.

    PubMed  CAS  Google Scholar 

  10. Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke fetal contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990;85:507–514.

    PubMed  CAS  Google Scholar 

  11. Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Schichiri M, Koike A, Nogami A, Marumo F. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation 1993;S7:1715–1721.

    Google Scholar 

  12. Thaik CM, Calderone A, Takahashi N, Colucci WS. Interleukin-lβ modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 1995, 96:1093–1099.

    PubMed  CAS  Google Scholar 

  13. Yokoyama T, Nakano M, Bednarczyk JL, Mclntyre BW, Entmann ML, Mann DL. Tumor necrosis factor-α provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 1997;95:1247–1252.

    PubMed  CAS  Google Scholar 

  14. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997;29:859–870.

    Article  PubMed  CAS  Google Scholar 

  15. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJE, Sabbadini RA. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell dearth. J Clin Invest 1996;98;2854–2865.

    PubMed  CAS  Google Scholar 

  16. Wang L, Ma W, Markovich R, Chen JW, Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res 1998;83:516–522.

    PubMed  CAS  Google Scholar 

  17. Nakano M, Knowlton AA, Dibbs Z, Mann DL. Tumor necrosis factor-α confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 1998;97:1392–1400.

    PubMed  CAS  Google Scholar 

  18. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, bak, and bcl-x. Circ Res 1999;84:21–33.

    PubMed  CAS  Google Scholar 

  19. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gpl30. Blood 1995;86:1243–1254.

    PubMed  CAS  Google Scholar 

  20. Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura SI, Nakajima K, Koyama K, Iwamatsu A, Tsunasawa S, Sakiyama F, Matsui H, Takahara Y, Taniguchi T, Kishimoto T. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986, 324:73–76.

    Article  PubMed  CAS  Google Scholar 

  21. Paul SR, Bennett F, Calvetti JA, Kelleher K, Wood CR, O’Hara RM, Leary AC, Sibley B, Clark SC, Williams DA, Yang YC. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci USA 1990;87:7512–7516.

    Article  PubMed  CAS  Google Scholar 

  22. Gearing DP, Gough NM, King JA, Hilton DJ, Nicola NA, Simpson RJ, Nice EC, Kelso A, Metcalf D. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 1987;6:3995–4002.

    PubMed  CAS  Google Scholar 

  23. Malik N, Kallestad JC, Gunderson NL, Austin SD, Neubauer MG, Ochs V, Marquardt H, Zarling JM, Shoyab M, Wei CM, Linsley PS, Rose TM. Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M. Mol Cell Biol 1989;9:2847–2853.

    PubMed  CAS  Google Scholar 

  24. Stöckli KA, Lottspeich F, Sendtner M, Masiakowski P, Carroll P, Götz R, Lindholm D, Thoenen H. Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 1989;342:920–923.

    Article  PubMed  Google Scholar 

  25. Pennica D, King KL, Shaw KJ, Luis E, Rullamas J, Luoh SM, Darbonne WC, Knutzon DS, Yen R, Chien KR, Baker JB, Wood WI. Expression cloning of cardiotrophin i, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci USA 1995;92:1142–1146.

    Article  PubMed  CAS  Google Scholar 

  26. Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T. Molecular cloning and expression of an IL-6 signal transducer, gpl30. Cell 1990;63:1149–1157.

    Article  PubMed  CAS  Google Scholar 

  27. Gearing DP, Thut CJ, VandenBos T, Gimpel SD, Delaney PB, King J, Price V, Cosman D, Beckmann MP. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gpl30. EMBO J 1991; 10:2839–2848.

    PubMed  CAS  Google Scholar 

  28. Yamasaki K, Taga T, Hirata Y, Yawata H, Kawanishi Y, Seed B, Taniguchi T, Hirano T, Kishimoto T. Cloning and expression of the human interleukin-6 (BSF-2/IFNβ 2) receptor. Science 1988;241:825–828.

    Article  PubMed  CAS  Google Scholar 

  29. Hilton DJ, Hilton AA, Raicevic A, Rakar S, Harrison-Smith M, Gough NM, Begley CG, Metcalf D, Nicola NA, Willson TA. Cloning of a murine IL-11 receptor a-chain; requirement for gp130 for high affinity binding and signal transduction. EMBO J 1994;13:4765–4775.

    PubMed  CAS  Google Scholar 

  30. Davis S, Aldrich TH, Valenzuela DM, Wong V, Furth ME, Squinto SP, Yancopoulos GD. The receptor for ciliary neurotrophic factor. Science 1991;253:59–63.

    Article  PubMed  CAS  Google Scholar 

  31. Robledo O, Fourcin M, Chevalier S, Guillet C, Auguste P, Pouplard-Barthelaix A, Pennica D, Gascan H, Signaling of the cardiotrophin-1 receptor. Evidence for a third receptor component. J Biol Chem 1997;272:4855–4863.

    Article  PubMed  CAS  Google Scholar 

  32. Narazaki M, Witthuhn BA, Yoshida K, Silvennoinen O, Yasukawa K, Ihle JN, Kishimoto T, Taga T. Activation of JAK2 kinase mediated by the interleukin 6 signal transducer gpl30. Proc Nati Acad Sci USA 1994;91:2285–2289.

    Article  CAS  Google Scholar 

  33. Stahl N, Boulton TG, Farruggella T, Ip NY, Davis S, Witthuhn BA, Quelle FW, Silvennoinen O, Barbieri G, Pellegrini S, Ihle JN, Yancopoulos GD. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 β receptor components. Science 1994;263:92–95.

    Article  PubMed  CAS  Google Scholar 

  34. Ihle JN. STATs: signal transducers and activators of transcription. Cell 1996;84:331–334.

    Article  PubMed  CAS  Google Scholar 

  35. Daeipour M, Kumar G, Amaral MC, Nel AE. Recombinant IL-6 activates p42 and p44 mitogen-activated protein kinases in the IL-6 responsive B cell line, AF10. J Immunol 1993;150:4743–4753.

    PubMed  CAS  Google Scholar 

  36. Kumar G, Gupta S, Wang S, Nel AE. Involvement of janus kinases, p52shc, Raf-1, and MEK-1 in the IL-6-induced mitogen-activated protein kinase cascade of a growth-responsive B cell line. J Immunol 1994;153:4436–4447.

    PubMed  CAS  Google Scholar 

  37. Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y, Yamauchi-Takihara K, Kishimoto T, Activation of JAK-STAT and MAP kinases by leukemia inhibitory factor through gpl30 in cardiac myocytes. Circulation 1996;94:2626–2632.

    PubMed  CAS  Google Scholar 

  38. Kodama H, Fukuda K, Pan J, Makino S, Baba A, Hori S, Ogawa S. Leukemia inhibitory factor, a potent cardiac hypertrophie cytokine, activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 1997;81:656–663.

    PubMed  CAS  Google Scholar 

  39. Wollert KC, Chien KR. Cardiotrophin-1 and the role of gpl30-dependent signaling pathways in cardiac growth and development. J Mol Med 1997;75:492–501.

    Article  PubMed  CAS  Google Scholar 

  40. Wollert KC, Taga T, Saito M, Narazaki M, Kishimoto T, Glembotski CC, Vernallis AB, Heath JK, Pennica D, Wood WI, Chien KR. Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series via gpl30/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 1996;271:9535–9545.

    Article  PubMed  CAS  Google Scholar 

  41. Hirota H, Yoshida K, Kishimoto T, Taga T. Continuous activation of gpl30, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 1995;92:4862–4866.

    Article  PubMed  CAS  Google Scholar 

  42. Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR. Cardiotrophin-1 inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 1997;272:5783–5791.

    Article  PubMed  CAS  Google Scholar 

  43. Stephanou A, Brar B, Heads R, Knight RD, Marber MS, Pennica D, Latchman DS. Cardiotrophin-1 induces heat shock protein accumulation in cultured cardie myocytes and protects them from stressful stimuli. J Mol Cell Cardiol 1998;30:849–855.

    Article  PubMed  CAS  Google Scholar 

  44. Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T. Activation of gpl30 transduces hypertrophie signals via STAT3 in cardiac myocytes. Circulation 1998;98:346–352.

    PubMed  CAS  Google Scholar 

  45. Fujio Y, Kunisada K, Hirota H, Yamauchi-Takihara K, Kishimoto T. Signals through gpl30 upregulate bcl-x gene expression via STATl-binding cis-element in cardiac myocytes. J Clin Invest 1997;99:2898–2905.

    PubMed  CAS  Google Scholar 

  46. Hirota H, Chen J, Betz UAK, Rajewsky K, Gu Y, Ross J, Müller W, Chien KR. Loss of a gpl30 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999; 97:189–198.

    Article  PubMed  CAS  Google Scholar 

  47. Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, Fujiwara H, Hirata M, Yamagami T, Nakahata T, Hirabayashi T, Yoneda Y, Tanaka K, Wang WZ, Mori C, Shiota K, Yoshida N, Kishimoto T. Targeted disruption of gpl30, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci USA 1996, 93. 407–411.

    Article  PubMed  CAS  Google Scholar 

  48. Yamauchi-Takihara K, Ihara Y, Ogata A, Yoshizaki K, Azuma J, Kishimoto T. Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 1995;91:1520–1524.

    PubMed  CAS  Google Scholar 

  49. Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. Cytokine gene expression after myocardial infarction in rat hearts. Possible implication in left ventricular remodeling. Circulation 1998;98:149–156.

    PubMed  CAS  Google Scholar 

  50. Takimoto Y, Aoyama T, Pennica D, Shinoda E, Keyamura R, Hattori R, Yui Y, Sasayama S. Augmented gene expression of cardiotrophin-1 and its receptor component, gpl30, in both ventricles after myocardial infarction in the rat. Circulation 1998 (suppl);98:1–839.

    Google Scholar 

  51. Wang F, Seta Y, Baumgarten G, Mann DL. Expression of leukemia inhibitory factor in the adult mammalian heart. Dynamic regulation and functional significance. Circulation 1998 (suppl);98:1–247.

    Google Scholar 

  52. Sakai S, Miyauchi T, Kobayashi T, Yamaguchi I, Sugishita Y. Involvement of endogenous interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) in the development of cardiac hypertrophy induced by pressure-overload in vivo in rats. Circulation 1998 (suppl);98;1–421.

    Google Scholar 

  53. Gwechenberger M, Mendoza LH, Youker KA, Frangogiannis NG, Smith W, Michael LH, Entmann ML. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 1999;99:546–551.

    PubMed  CAS  Google Scholar 

  54. Biasucci LM, Vitelli A, Liuzzo G, Altamura S, Caligiuri G, Monaco C, Rebuzzi AG, Ciliberto G, Maseri A.. Elevated levels of interleukin-6 in unstable angina. Circulation 1996;94:874–877.

    PubMed  CAS  Google Scholar 

  55. Ikeda U, Ohkawa F, Seino Y, Yamamoto K, Hidaka Y, Kasahara T, Kawai T, Shimada K. Serum interleukin 6 levels become elevated in acute myocardial infarction. J Mol Cell Cardiol 1992;24:579–584.

    Article  PubMed  CAS  Google Scholar 

  56. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction. A report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 1996;27:1201–1206.

    Article  PubMed  CAS  Google Scholar 

  57. Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, Mabuchi N, Sawaki M, Kinoshita M. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 1998;31:391–398.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wollert, K.C. (2000). Inhibition of cardiac myocyte apoptosis by gp130-dependent cytokines. In: Schunkert, H., Riegger, G.A.J. (eds) Apoptosis in Cardiac Biology. Basic Science for the Cardiologist, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-38143-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-38143-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8648-3

  • Online ISBN: 978-0-585-38143-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics