Skip to main content

Cardiac myocytes and fibroblasts exhibit differential sensitivity to apoptosis-inducing stimuli

  • Chapter
Apoptosis in Cardiac Biology

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 5))

  • 96 Accesses

Abstract

Cell death in the cardiovascular system by apoptosis has received considerable attention in recent years. Cardiac and vascular cell death by apoptosis is not only a feature of embryologic and neonatal development, but can be elicited by a variety of diverse stimuli (Table I) and has been linked to virtually every major cardiovascular disease or disorder (Table II). In many of these disorders, particularly those leading to chronic heart failure, myocyte cell death/loss is usually accompanied by an increase in fibrous tissue content (1). Excessive fibrosis in the presence of myocyte loss has been advocated as a basis for impaired myocardial function in these disease states. The spontaneous hypertensive rat presents a clear example of the imbalance that exists as heart failure evolves (2). In this experimental model, increased cardiac myocyte apoptosis (Figure 1C) can be linked to the reduction in myocyte fractional mass (Figure 1A) as the hearts progress to failure. During this same time, there is a substantial increase in the fibrotic fractional area of the heart (Figure IB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boluyt M, Lakatta EG. Cardiovascular Aging in Health. In: Advances in Organ Biology. Vol. 4B, p. 257–303, 1998 A-14.

    Google Scholar 

  2. Li Z, Bing OL, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Amer. J. Physiol. H2313–H2319, 1997.

    Google Scholar 

  3. Zheng JS, Boluyt MO, O’Neill L, Crow MT, Lakatta EG.. Extracellular ATP induces immediate early gene expression but not cellular hypertrophy in neonatal cardiac myocytes. Circ. Res. 74:1034–1041, 1994.

    PubMed  CAS  Google Scholar 

  4. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Circulation 81:1161–1172, 1990.

    PubMed  CAS  Google Scholar 

  5. Gottlieb,RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest. 94:1621–1628, 1994.

    PubMed  CAS  Google Scholar 

  6. Kajstura, J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab. Invest. 74:86–107, 1996.

    PubMed  CAS  Google Scholar 

  7. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe H. Hypoxia induces apoptosis with enhanced expression of fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ. Res. 75:426–433, 1994.

    PubMed  CAS  Google Scholar 

  8. Long X, Boluyt MO, Zheng JS, O’Neill L, Pirelli C, Lakatta EG, Crow MT. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J. Clin. Invest. 99:2635–2643, 1997.

    PubMed  CAS  Google Scholar 

  9. Long X, Boluyt MO, Li X, Crow MT, Lakatta EG. Hypoxia-induced expression of heme-oxygenase gene expression in cultured neonatal rat cardiac myocytes. Circ. Suppl. 92:1693, 1995.

    Google Scholar 

  10. Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol. Rev. 69:765–796, 1989.

    PubMed  CAS  Google Scholar 

  11. Crider BP, Xie X-S, Stone DK. Bafilomycin inhibits proton flow through the H+-channel of vacuolar proton pumps. J. Biol. Chem. 269:17379–17381, 1994.

    PubMed  CAS  Google Scholar 

  12. Gottlieb RA, Giesing HA, Zhu JY, Engler RL, Babior, BM. Cell acidification in apoptosis: granulocyte colony-stimulating factor delays programmed cell death in neutrophils by upregulating the vacuolar H+-ATPase. Proc. Natl. Acad. Sci. USA 92:5965–5968, 1995.

    Article  PubMed  CAS  Google Scholar 

  13. Gottlieb RA, Gruol DL, Zhu YJ, Engler RL. Preconditioning in rabbit cardiomyocytes: role of pH, vacuolar proton ATPase, and apoptosis. J. Clin. Invest. 97:2391–2398, 1996.

    PubMed  CAS  Google Scholar 

  14. Nishihara T, Akifusa S, Koseki T, Kato S, Muro M, Hanada N. Specific inhibitors of vacuolar type H+-ATPases induce apoptosis. Biochem. Biophys. Res. Comm. 212:255–262, 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Long X, Crow M, Sollott S, O’Neil L, Menees D, Boluyt MO, Hipolito L, Asai T, Lakatta, EG. Enhanced expression of p53 and apoptosis induced by blockade of vacuolar proton ATPase induces p53-mediated apoptosis in cardiomyocytes. J. Clin. Invest. 101:1453–1461, 1998.

    PubMed  CAS  Google Scholar 

  16. Meisenholder GW, Martin SJ, Green DR, Norberg J, Babior BM, Gottlieb, RA. Events in apoptosis: acidification is downstream of protease activation and BCL-2 protection. J. Biol. Chem. 271:16260–16262, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Gottlieb RA, Nordberg J, Skowronski E, Babior BM. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc. Natl. Acad. Sci. USA 93:654–658, 1995.

    Article  Google Scholar 

  18. Li J, Eastman, E. Apoptosis in an interleukin-2-dependent cytotoxic T lymphocyte cell line is associated with intracellular acidification. J. Biol. Chem. 270:3203–3211, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Perez-Sala D. Collado-Escobar D, Mollinedo F. Intracellular alkalinization supressess lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J. Biol. Chem. 270:6235–6242, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Barry MA, Reynolds JE, Eastman A. Etoposide-induced apoptosis in HL-60 cells in associated with intracellular acidification. Cancer Res. 53:2349–2357, 1993.

    PubMed  CAS  Google Scholar 

  21. Rebollo A, Gomez J, Martinez-de Aragon A, Lastres P, Silva A, Prerez-Sala D. Apoptosis induced by IL-2 withdrawal is associated with an intracellular acidification. Exp. Cell Res. 218:581–585, 1995.

    Article  PubMed  CAS  Google Scholar 

  22. Rajotte D, Haddad P, Hainan A, Cragoe, EJ Jr, Hoang T. Role of protein kinase C and the Na+H+ antiporter in suppression of apoptosis by granulocyte macrophage colony-stimulating factor. J. Biol. Chem. 267:9980–9987, 1992.

    PubMed  CAS  Google Scholar 

  23. Gottlieb RA, Giesing HA, Engler RL, Babior BM. The acid deoxyribonuclease of neutrophils: a possible participant in apoptosis-associated genome destruction. Blood 86:2414–2418, 1995.

    PubMed  CAS  Google Scholar 

  24. Russo CA, Weber TK, Volpe CM, Stoler DL, Petrelli NJ, Rodriguez-Bigas M, Burhans MCW, Anderson GR. An anoxia inducible endonuclease and enhanced DNA breakage as contributors to genomic instability in cancer. Cancer Res. 55:1122–1128, 1995.

    PubMed  CAS  Google Scholar 

  25. Ko YJ, Prices C. p53: puzzle and paradigm. Genes Dev. 10:1054–1072, 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Grabber EG, Osmanian C, Jacks T, Houseman DE, Koch CJ, Lowe SW, Giacca AJ. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379:88–91, 1996.

    Article  Google Scholar 

  27. Donehower LA, Harvey M, Siagle BL, McAurthur MJ, Mongomery JR, Butel JS, Bradley R. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356:215–221, 1997.

    Article  Google Scholar 

  28. Schwartz JL, Indignities DZ, Zhao S. Molecular and biochemical reprogramming of oncogenes is through the activity of prooxidiants and antioxidants. Ann. NY Acad. Sci. 686:262–278, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Salivanova G, Wilman KG. p53: a cell cycle regulator activated by DNA damage. Adv. Cancer Res. 66:143–180, 1995.

    Google Scholar 

  30. Graeber TG, Peterson JF, Tsui M, Monica K, Fournace AJ, Garcia AJ. Hypoxia induces accumulation of p53, but activation of a G1-phase checkpoint by low oxygen conditions is independent of p53 Status. Mol. Cell. biol. 14:6264–6277, 1994.

    PubMed  CAS  Google Scholar 

  31. Miyashita T, Reed JC. Tunor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299, 1995.

    Article  PubMed  CAS  Google Scholar 

  32. Miyashita T, Harigani M, Hanada M, Reed JC. Identification of a p53-dependent negative response in the bci-2 gene. Cancer Res. 54:3131–3135, 1994.

    PubMed  CAS  Google Scholar 

  33. Yonish-Rouach E, Resnitsky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukemia cells that is inhibited by interleukin-6. Nature 353:345–347, 1991.

    Article  Google Scholar 

  34. Gottleib E, Haffner R, von Rudin T, Wagner EF, Oren M. Down-regulation of wild-type p53 activity interferes with apoptosis of IL3-dependent hematopoietic cells following IL-3 withdrawal. EMBOJ 13:1368–1374, 1994.

    Google Scholar 

  35. Pierzchalski P, Reiss K, Cheng W, Cirelli C, Kajstura J, Nitahara JA, Rizk M, Capogrossi MC, Anversa P. p53 induces myocytes apoptosis via the activation of the renin-angiotensin system. Exp. Cell. Res. 234:57–65, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Sharov VG, Sabbah NH, Shimoyatna H, Goussev AV, Lesch M, Goldstein S. Evidence of cardiomyocyte apoptosis in myocardium of dogs with chronic heart failure. Am. J. Physiol. H2313–H2319, 1997.

    Google Scholar 

  37. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P. Angiotensin 11 inducesapoptosis of adult ventricular myocytes in vitro. J. Mol. Cell. Cardiol. 29:859–870, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Cigola E, Kajstura J, Li B, Meggs LG, Anversa P. Angiotensin II activates programmed myocytecell death in vitro. Exp. Cell Res. 231:363–371, 1997.

    Article  PubMed  CAS  Google Scholar 

  39. El-Diery WS., Tokino T, Velculesco VE, Levy DB, Parsons R, Trent JM, Lin D. Mercer WE, Kinzler KW, Vogelstein B. WAF-1, a potential mediator of p53 tumor suppression. Cell 75:817–825, 1993.

    Article  Google Scholar 

  40. Chen C, Oliner JD, Zhan Q, Fornace AJ, Vogelstein B, Kastan MB. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc. Natl. Acad. Sci. USA 91:2684–2688, 1994.

    Article  PubMed  CAS  Google Scholar 

  41. Kastan MB, Zhan Q, El-Diery WS, Carrier F, Jacks T, Walsh WV, Plunkett WS, Vogelstein B, Fournace AJ. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 13:587–597, 1992.

    Article  Google Scholar 

  42. Okamoto L, Beach D. Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBOJ. 13:4816–4822, 1994.

    CAS  Google Scholar 

  43. Owen-Schaub L, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA,. Diesseroth AB, Zhang WW, Kruzel E, Radinsky R. Wild type p53 and a temperature sensitive mutant inducefas/Apo-1 expression. Mol. Cell. Biol. 15:3032–3040, 1995.

    PubMed  CAS  Google Scholar 

  44. Wu GS, Burns TF, MacDonald ERIII, Jiang W, Meng R, Krantz ID, Kao G, Gan D-D, Zhou J-Y, Muschel R, Hamilton SR, Spinner N, Markowitz S, Wu G, El-Diery WS. Killer/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Gen. 17:141–143, 1997.

    Article  CAS  Google Scholar 

  45. Nishigaki K, Minatoguchi S, Asano K, Noda T, Sano H, Kumada H, Tanaka T, Watanabe S, Seishima M, Fujiwara H. Plasma levels of soluble fas and fas ligand, apoptosis signaling receptormolecules, in patients with congestive heart failure. Circulation 94(Suppl l):1–32, abstract.

    Google Scholar 

  46. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a univeral inhibitor of cyclin kinases. Nature 366:701–704, 1993.

    Article  PubMed  CAS  Google Scholar 

  47. Li R, Waga S, Hannon GJ, Beach D, Stillman B. Differential effects by the p21 cdk inhibitor on PCNA-dependent DNA replication and repair. Nature 371:534–537, 1994.

    Article  PubMed  CAS  Google Scholar 

  48. Waga S, Hannon GJ, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578, 1994.

    Article  PubMed  CAS  Google Scholar 

  49. Katayose D, Wersto R, Cowan KH, Seth P. Effects of a recombinant adenovirus expression WAFl/cipl on cell growth, cell cycle, and apoptosis. Cell Growth Diff. 6:1207–1212, 1995.

    PubMed  CAS  Google Scholar 

  50. Canman CE, Gilmer TM, Coutts SB, Kastan MD. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev. 9:600–611, 1995.

    Article  PubMed  CAS  Google Scholar 

  51. Matsushita H, Morishita R, Kida I, Aoki M, Hayashi SI, Tomita N, Yamamoto K, Moriguchi A, Noda A, Kaneda Y, Higaki J, Ogihara T. Inhibition of human vascular smooth muscle cells by overexpression of p21 gene through induction of apoptosis. Hypertension 31:493–498, 1998.

    PubMed  CAS  Google Scholar 

  52. Boudreau N, Werb Z, Bisseil MJ. Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc. Natl. Acad. Sci. USA 93:3509–3513, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. Akashi M, Hachiya M, Osawa Y, Spirin K, Suzuki G, Koeffler HP. Irradiation induces WAF1 expression through a p53-independent pathway in KG-1 cells. J. Biol. Chem. 270:19181–19187, 1995.

    Article  PubMed  CAS  Google Scholar 

  54. Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D. Induction of WAFl/cipl by a p53-independent pathway. Cancer Res. 54:3391–3395, 1994.

    PubMed  CAS  Google Scholar 

  55. Bialik SG, Geenen DL, Sasson IE, Cheng R, Homer JW Evans SM, Lord EM, Koch CJ, Kitsis RL. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J. Clin. Inv. 100:1363–1372, 1997.

    CAS  Google Scholar 

  56. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the bc12-to-bax protein ration in the cell. J. Clin. Inv. 101:1326–1342, 1998.

    CAS  Google Scholar 

  57. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan J-C, Valent A, Minty A, Chaon P, Lelias J-M, Dumont X, Ferrara P, McKeon F, Caput D. Monoallelically expressed gene related to p53 a Ip36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819, 1997

    Article  PubMed  CAS  Google Scholar 

  58. Just CA, Marin MC, Kaolin GW. P73 is a human p53-related protein that can induce apoptosis. Nature 389:191–194, 1997.

    Article  CAS  Google Scholar 

  59. Osawa M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, Ikawa Y, Nimura Y, Nakagawara A, Obinata M, Ikawa S, Cloning and functional analyses of human p51, which structurally and functionally resembles p53. Nat. Med. 4:839–843, 1998.

    Article  Google Scholar 

  60. Evan G, Littlewood T. A matter of life and cell death. Science 281:1317–1322, 1998.

    Article  PubMed  CAS  Google Scholar 

  61. Reiss K, Cheng W, Giordano A, DeLuca A, Li B, Kajstura J, Anversa P. Myocardial infarction is coupled with activation of cyclin and cyclin-dependent kinases in myocytes. Exp. Cell Res. 225:44–54, 1996.

    Article  CAS  Google Scholar 

  62. Kim KK, Soonpaa MH, Daud AI, Koh GY, Kim JS, Field YJ. Tumor suppressor gene expression during normal and pathological myocardial growth. J. Biol. Chem 269:22607–22613.

    Google Scholar 

  63. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J. Clin. Invest. 100:1991–1999, 1997.

    PubMed  CAS  Google Scholar 

  64. Long X, Lakatta E, O’Neill L, Boluyt M, Seth P, Crow MT. Cardiomyocyte Apoptosis Triggered the Cyclin Kinase Inhibitor, p21/WAFl, is Suppressed by the Adrenergic Agonist, Phenylephrine.AHA 70th Session. Circ Suppl. 96(8): 1–553; 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lakatta, E.G., Long, X., Chesley, A., Crow, M. (2000). Cardiac myocytes and fibroblasts exhibit differential sensitivity to apoptosis-inducing stimuli. In: Schunkert, H., Riegger, G.A.J. (eds) Apoptosis in Cardiac Biology. Basic Science for the Cardiologist, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-38143-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-38143-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8648-3

  • Online ISBN: 978-0-585-38143-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics