Skip to main content

Death receptors and their ligands

  • Chapter
Book cover Apoptosis in Cardiac Biology

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 5))

  • 93 Accesses

Abstract

The identification and description of an intrinsic program of regulated cellular suicide or apoptosis was originally obtained from morphological analyses in developmental biology (76, 77). This program exists in all multicellular organisms, and genetic analyses in the nematode Caenorhabditis elegans identified three ced-genes (for C. elegans death) as basal, highly conserved components of this program, see (39, 57). In mammals, several structural and functional homologs of these ced-encoded proteins are involved in the apoptosis regulating complex formation at the outer mitochondrial membrane (Fig. 1), the apoptosome (56, 124), such as Apaf-1 (for “apoptosis protease activating factor”) or proteins of the Bcl-2 family (see chapter I.2.2). Another important discovery from C. elegans genetics was the identification of interleukin-lß-converting enzyme (ICE or caspase-1) as a functional homolog of the ced-3 gene product. This discovery triggered the identification of a whole cascade of caspases (for “cysteine-containing aspartic acid proteases”, see chapter I.3.1). This cascade is involved in the execution phase of apoptosis (164), and one source for activating the cascade is the mitochondrial apoptosome (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, D., K. Wiegman, S. Adam-Klages, A. Ruff, and M. Krönke. A novel cytoplasmic domain of the p55 TNF receptor initiates the neutral sphingomyelinase pathway. J Biol Chem 271: 14617–14622, 1996.

    PubMed  CAS  Google Scholar 

  2. Adam-Klages, S., D. Adam, K. Wiegmann, S. Struve, W. Kolanus, J. Schneider-Mergener, and M. Kronke. Fan, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86: 937–947, 1996.

    PubMed  CAS  Google Scholar 

  3. Aderka, D., H. Engelmann, Y. Maor, C. Brakebusch, and D. Wallach. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med 175: 323–329, 1992.

    PubMed  CAS  Google Scholar 

  4. Amarante-Mendes, G. P., A. J. McGahon, W. K. Nishioka, D. E. Afar, O. N. Witte, and D. R. Green. Bcl-2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with upregulationofBcl-xL. Oncogene 16: 1383–1390, 1998.

    PubMed  CAS  Google Scholar 

  5. Anderson, D. M., E. Maraskovsky, W. L. Billingsley, W. C. Dougall, M. E. Tometsko, E. R. Roux, M. C. Teepe, R. F. DuBose, D. Cosman, and L. Galibert. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390: 175–179, 1997.

    PubMed  CAS  Google Scholar 

  6. Ashkenazi, A., and V. M. Dixit. Death receptors: signaling and modulation, Science 281: 1305–1308, 1998.

    PubMed  CAS  Google Scholar 

  7. Baeuerle, P. A., and D. Baltimore. NF-kB: ten years after. Cell 87: 13–21, 1996.

    PubMed  CAS  Google Scholar 

  8. Barrett, G. L., and A. Georgiu. The low-affinity nerve growth factor receptor p75NGFR mediates death of PC12 cells after nerve growth factor withdrawal. J Neurosci Res 45: 117–128, 1996.

    PubMed  CAS  Google Scholar 

  9. Battling, B., H. Milting, H. Schumann, A. El-Banayosy, M. Koerner, R. Koerfer, D. Darmer, J. Holtz, and H. R. Zerkowski. Improved myocardial expression of anti-apoptotic genes under support by ventricular assist devices (VAD) in terminal heart failure (abstr). Circulation 98(supll): 1–200, 1998.

    Google Scholar 

  10. Becker, K., P. Schneider, K. Hofmann, C. Mattmann, and J. Tschopp. Interaction of Fas (Apo-1/CD95) with proteins implicated in the ubiquitination pathway. FEBS Lett 412: 102–106, 1997.

    PubMed  CAS  Google Scholar 

  11. Beg, A. A., and D. Baltimore. An essential role for NF-KB in preventing TNF-α-induced cell death. Science 274: 782–784, 1996.

    PubMed  CAS  Google Scholar 

  12. Beutler, B., I. W. Milsark, and A. Cerami. Cachectin/tumor necrosis factor: production, distribution and metabolic fate in vivo. J Immunol 135: 3972–3977, 1985.

    PubMed  CAS  Google Scholar 

  13. Bigda, J., I. Beletsky, C. Brakebusch, Y. Vasfolomeev, H, Engelmann, J. Bigda, H. Holtmann, and D. Wallach. Dual role of the p75 tumor necrosis factor (TNF) receptor in TNF cytotoxicity. J Exp Med 180: 445–460, 1994.

    PubMed  CAS  Google Scholar 

  14. Black, R. A., C. T. Rauch, C. J. Kozlosky, J. L. Peschon, J. L. Slack, M. F. Wolfson, B. J. Castner, K. L. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N, Boiani, K. A. Schooley, M. Gerhart, R. Davis, J. N. Fitzner, R. S. Johnson, R, J. Paxton, C. J. March, and D. P. Cerretti. A metalloproteinase disintegrin that releases tumor-necrosis factor-α from cells. Nature 385: 729–733, 1997.

    PubMed  CAS  Google Scholar 

  15. Bodmer, J. L., K. Burns, P. Schneider, K. Hofmann, V. Steiner, M. Thome, T. Bornand, M. Hahne, M. Schroeter, K. Becker, A. Wilson, L. E. French, J. L. Browning, H. R. MacDonald, and J. Tschopp. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas (APO-1/CD95). Immunity 6: 79–88, 1997.

    PubMed  CAS  Google Scholar 

  16. Bozkurt, B., S. B. Kribbs, F. J. Clubb, L. H. Michael, V. V. Didenko, P. J. Hornsby, Y. Seta, H. Oral, F. G. Spinale, and D. L. Mann. Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97: 1382–1391, 1998.

    PubMed  CAS  Google Scholar 

  17. Bradley, J. R., D. R. Johnson, and J. S. Pober. Four different classes of inhibitors of receptor-mediated endocytosis decrease tumor necrosis factor-induced gene expression in human endothelial cells. J Immunol 150: 5544–5555, 1993.

    PubMed  CAS  Google Scholar 

  18. Brooks, P. C., and A. L. Et. Integrin αvβ3 antagonists promote tumor-regression by inducing apoptosis of angiogenic blood-vessels. Cell 79: 1157–1164, 1994.

    PubMed  CAS  Google Scholar 

  19. Buckley, C. D., D. Pilling, N. V. Henriquez, G. Parsonage, K. Threlfall, D. Scheel-Toellner, D. L. Simmons, A. N. Akbar, J. M. Lord, and M. Salmon. RDG peptides induce apoptosis by direct caspase-3 activation. Nature 397: 534–539, 1999.

    PubMed  CAS  Google Scholar 

  20. Burns, K., F. Martinon, C. Esslinger, H. Pahl, P. Schneider, J. L. Bodmer, F. Di Marco, L. French, and J. Tschopp. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273: 12203–12209, 1998.

    PubMed  CAS  Google Scholar 

  21. Cascino, I., G. Papoff, R. De Maria, R. Testi, and G. Ruberti. Fas/Apo-1 (CD95) receptor lacking the intracytoplasmic signaling domain protects tumor cells from Fas-mediated apoptosis. J Immunol 156: 13–17, 1996.

    PubMed  CAS  Google Scholar 

  22. Chang, H. Y., H. Nishitoh, X. Yang, H. Ichijo, and D. Baltimore. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281: 1860–1863, 1998.

    PubMed  CAS  Google Scholar 

  23. Chaudhary, P. M., M. Eby, A. Jasmin, A. Bookwalker, J. Murray, and L. Hood. Death receptor 5, a new member of TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kB pathway. Immunity 7: 821–830, 1997.

    PubMed  CAS  Google Scholar 

  24. Cheema, S. S., G. L. Barrett, and P. F. Bartlett. Reducing p75 nerve growth factor receptor levels using antisense oligonucleotides prevents the loss of axotomized sensory neurons in the dorsal root ganglia of newborn rats. J Neurosci Res 46: 239–245, 1996.

    PubMed  CAS  Google Scholar 

  25. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesites, and D. E. Ingber. Geometric control of cell life and death. Science 276: 1425–1428, 1997.

    PubMed  CAS  Google Scholar 

  26. Cheng, J., C. Liu, W. J. Koopman, and J. D. Mountz. Characterization of human Fas gene: exon/ intron organization and promoter region. J Immunol 154: 1239–1245, 1995.

    PubMed  CAS  Google Scholar 

  27. Chicheportiche, Y., P. R. Bourdon, H. Xu, Y. M. Hsu, H. Scott, C. Hession, I. Garcia, and J. L. Browning. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 272: 32401–32410, 1997.

    PubMed  CAS  Google Scholar 

  28. Chinnaiyan, A. M., O. R. K, G. L. Yu, R. H. Lyons, M. Garg, D. R. Duan, L. Xing, R. Gentz, J. Ni, and V. M. Dixit. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274: 990–992, 1996.

    PubMed  CAS  Google Scholar 

  29. Choi, K. B., F. Wong, J. M. Harlan, P. M. Chaudhary, L. Hood, and A. Karsan. Lipopolysaccharide mediates endothelial apoptosis by a FADD-dependent pathway. J Biol Chem 273: 20185–20188, 1998.

    PubMed  CAS  Google Scholar 

  30. Chou, J. J., H. Matsuo, H. Duan, and G. Wagner. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 94: 171–180, 1998.

    PubMed  CAS  Google Scholar 

  31. Chu, K. T., X. H. Niu, and L. T. Williams. A Fas-associated protein factor, FAF1, potentiates Fasmediated apoptosis. Proc Natl Acad Sci 92: 11894–11898, 1995.

    PubMed  CAS  Google Scholar 

  32. Crowe, P. D., B. N. Walter, K. M. Mohler, C. Otten-Evans, R. A. Black, and C. F. Ware. A metalloprotease inhibitor blocks shedding of the 80-kD TNF receptor and TNF processing in T lymphocytes. J Exp Med 181: 1205–1208, 1995.

    PubMed  CAS  Google Scholar 

  33. De Groote, D., G. E. Grau, I. Dehart, and P. Franchimont. Stabilization of functional tumor necrosis factor-a by its soluble TNF receptors. Eur Cytokine Netw 4: 359–362, 1993.

    PubMed  Google Scholar 

  34. De Vos, K., V. Goossens, E. Boone, D. Vercammen, K. Vancompernolle, P. Vandenabeele, G. Haegeman, W. Fiers, and J. Grooten. The 55-kDa tumor necrosis factor receptor induces clustering of mitochondria through its membrane-proximal region. J Biol Chem 273: 9673–9680, 1998.

    PubMed  Google Scholar 

  35. Decaudin, D., S. Geley, R. Hirsch, M. Castedo, P. Marchetti, A. Macho, R. Kofier, and G. Kroemer. Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 57: 62–67, 1997.

    PubMed  CAS  Google Scholar 

  36. Degli-Esposti, M. A., W. C. Dougall, P. J. Smolak, J. Waugh, C. A. Smith, and R. G. Goodwin. The novel receptor TRAIL-R4 induces NF-kB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7: 813–820, 1997.

    PubMed  CAS  Google Scholar 

  37. Degli-Esposti, M. A., P. J. Smolak, H. Walczak, J. Waugh, C. P. Huang, R. F. DuBose, R. G. Goodwin, and C. A. Smith. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186: 1165–1170, 1997.

    PubMed  CAS  Google Scholar 

  38. Duan, H., and V. M. Dixit. Raidd is a new ‘death’ adapter molecule. Nature 385: 86–89, 1997.

    PubMed  CAS  Google Scholar 

  39. Ellis, R. E., J. Yuan, and H. R. Horvitz. Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663–698, 1991.

    PubMed  CAS  Google Scholar 

  40. Emery, J. G., P. McDonnell, M. B. Burke, K. C. Deen, S. Lyn, C. Silverman, E. Dul, E. R. Appelbaum, C. Eichman, R. DiPrinzio, R. A. Dodds, I. E. James, M. Rosenberg, J. C. Lee, and P. R. Young. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273: 14363–14367, 1998.

    PubMed  CAS  Google Scholar 

  41. Engelmann, H., D. Novick, and D. Wallach. Two tumor necrosis factor-binding proteins purified from human urine: evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J Biol Chem 1990: 1531–1536, 1990.

    Google Scholar 

  42. Felzen, B., M. Shilkrut, H. Less, I. Sarapov, G. Maor, R. Coleman, R. B. Robinson, G. Berke, and O. Binah. Fas (CD95/Apo-l)-mediated damage to ventricular myocytes induced by cytotoxic T lymphocytes from perforin-deficient mice: a major role for Inositol 1, 4, 5-Triphosphate. Circ Res 82: 438–450, 1998.

    PubMed  CAS  Google Scholar 

  43. Frade, J. M., A. Rodrigez-Tebar, and Y. A. Barde. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383: 166–168, 1996.

    PubMed  CAS  Google Scholar 

  44. Frisch, S. M., and E. Ruoslahti. Integrins and anoikis. Curr Opin Cell Biol 9: 701–706, 1997.

    PubMed  CAS  Google Scholar 

  45. Goltsev, Y. V., A. V. Kovalenko, E. Arnold, E. E. Varfolomeev, V. M. Brodianskii, and D. Wallach. CASH, a novel caspase homologue with death effector domains. J Biol Chem 272: 19641–19644, 1997.

    PubMed  CAS  Google Scholar 

  46. Gong, L., T. Kamitani, K. Fujise, L. S. Caskey, and E. T. Yeh. Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J Biol Chem 272: 28198–28201, 1997.

    PubMed  CAS  Google Scholar 

  47. Grell, M., E. Douni, H. Wajant, M. Löhden, M. Clauss, B. Baxeiner, S. Georgopoulos, W. Lesslauer, G. Kollias, K. Pfizenmaier, and P. Scheurich. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83: 793–802, 1995.

    PubMed  CAS  Google Scholar 

  48. Griffith, T. S., and D. H. Lynch. TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 10: 559–563, 1998.

    PubMed  CAS  Google Scholar 

  49. Gross, A., X. M. Yin, K. Wang, M. C. Wei, J. Jockel, C. Milliman, H. Erdjument-Bromage, P. Tempst, and S. J. Korsmeyer. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-Rl/Fas death. J Biol Chem 274: 1156–1163, 1999.

    PubMed  CAS  Google Scholar 

  50. Gruss, H. J. Molecular, structural, and biological characteristics of the tumor necrosis factor ligand superfamily. Ira J Clin Lab Res 26: 143–159, 1996.

    CAS  Google Scholar 

  51. Han, D. K. M., P. M. Chaudhary, M. E. Wright, C. Friedman, B. J. Trask, R. T. Riedel, D. G. Baskin, S. M. Schwartz, and L. Hood. MRIT, a novel death-effector domain-containing protein, interacts with caspases and Bcl-xL and initiates cell death. Proc Natl Acad Sci 94: 11333–11338, 1997.

    PubMed  CAS  Google Scholar 

  52. Han, Z., K. Bhalla, P. Pantazis, E. A. Hendrickson, and J. H. Wyche. Cif (Cytochrome c effluxinducing factor) activity is regulated by Bcl-2 and caspase and correlates with the activation of Bid. Mol Cell Biol 19: 1381–1389, 1999.

    PubMed  CAS  Google Scholar 

  53. Han, Z., G. Li, T. A. Bremner, T. S. Lange, G. Zhang, R. Jemmerson, J. H. Wyche, and E. A. Hendrickson. A cytosolic factor is required for mitochondria] cytochrome c efflux during apoptosis. Cell Death Diff 5: 469–479, 1998.

    CAS  Google Scholar 

  54. Hardimann, G., F. L. Rock, S. Balasubramanian, R. A. Kastelein, and J. F. Bazan. Molecular characterization and modular analysis of human MyD88. Oncogene 13: 2467–2475, 1996.

    Google Scholar 

  55. Häusler, P., G. Papoff, A. Eramo, K. Reif, C. D. A., and G. Ruberti. Protection of CD95-mediated apoptosis by activation of phosphatidylinositide 3-kinase and protein kinase B. Eur J Immunol 28: 57–69, 1998.

    PubMed  Google Scholar 

  56. Hengartner, M. O. CED-4 is a stranger no more. Nature 388: 714–715, 1997.

    PubMed  CAS  Google Scholar 

  57. Hengartner, M. O., and H. R. Horvitz. Programmed cell death in Caenorhabditis elegans. Curr Opin Genet Dev 4: 581–-, 1994.

    PubMed  CAS  Google Scholar 

  58. Hennet, T., C. Richter, and E. Peterhans. Tumour necrosis factor-α induces Superoxide anion generation in mitochondria of L929 cells. Biochem J 289: 587–592, 1993.

    PubMed  CAS  Google Scholar 

  59. Higuchi, M., R. J. Proske, and E. T. H. Yeh. Inhibition of mitochondria! respiration chain complex I by TNF results in cytochrome c release, membrane permeability transition, and apoptosis. Oncogene 17: 2515–2524, 1998.

    PubMed  CAS  Google Scholar 

  60. Hofmann, K., P. Bucher, and J. Tschopp. The CARD domain: a new apoptotic signalling motif. Trends Biochem Sci 22: 155–156, 1997.

    PubMed  CAS  Google Scholar 

  61. Hohmann, H. P., R. Remy, M. Brockhaus, and A. P. Van Loon. Two different cell types have different major receptors for human tumor necrosis factor (TNF alpha). J Biol Chem 264: 14927–14934, 1989.

    PubMed  CAS  Google Scholar 

  62. Holmstrom, T. H., S. C. Chow, I. Elo, E. T. Coffey, S. Orrenius, L. Sistonen, and J. E. Eriksson. Suppression of Fas/APO-1-mediated apoptosis by mitogen-activated kinase signaling. J Immunol 160: 2626–2636, 1998.

    PubMed  CAS  Google Scholar 

  63. Hu, S., C. Vincenz, J. Ni, R. Gentz, and V. M. Dixit. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1-and CD-95-induced apoptosis. J Biol Chem 272: 17255–17257, 1997.

    PubMed  CAS  Google Scholar 

  64. Inohara, N., L. del Peso, T. Koseki, S. Chen, and G. Núnez. RICK, a novel protein kinase containing a caspase recruitment domain, interacts with CLARP and regulates CD95-mediated apoptosis. J Biol Chem 273: 12296–12300, 1998.

    PubMed  CAS  Google Scholar 

  65. Inohara, N., T. Koseki, Y. Hu, S. Chen, and Núnez, G. CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc Nati Acad Sci 94: 10717–10722, 1997.

    CAS  Google Scholar 

  66. Irmler, M., M. Thome, M. Hahne, P. Schneider, K. Hofmann, V. Steiner, J. L. Bodmer, M. Schroeter, K. Burns, C. Mattmann, D. Rimoldi, L. E. French, and J. Tschopp. Inhibition of death receptor signals by cellular FLIP. Nature 388: 190–195, 1997.

    PubMed  CAS  Google Scholar 

  67. Itoh, N., and S. Nagata. A novel protein domain required for apoptosis: mutational analysis of human Fas antigen. J Biol Chem 268: 10932–10937, 1993.

    PubMed  CAS  Google Scholar 

  68. Itoh, N., S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata. The polypeptide encoded by the cDNA for human surface antigen Fas can mediate apoptosis. Cell 66: 233–243, 1991.

    PubMed  CAS  Google Scholar 

  69. Jaattela, M., H. Mouritzen, F. Elling, and L. Bastholm. A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol 156: 1166–1173, 1996.

    PubMed  CAS  Google Scholar 

  70. Jaunin, F., K. Bums, J. Tschopp, T. E. Martin, and S. Fakan. Ultrastructural distribution of the death-domain-containing MyD88 protein in HeLa cells, Exp Cell Res 243: 67–75, 1998.

    PubMed  CAS  Google Scholar 

  71. Jiang, Y., J. D. Woronicz, and D. V. Goeddel, Prevention of constitutive TNF receptor signaling by silencer of death domains. Science 283: 543–546, 1999.

    PubMed  CAS  Google Scholar 

  72. Kagan, B. L., R. L. Baldwin, D. Munoz, and B. J., Wisnieski. Formation of ion-permeable channels by tumor necrosis factor-α. Science 257: 1427–1430, 1993.

    Google Scholar 

  73. Kamitani, T., K. Kito, H. P. Nguyen, H. F.-K. Wada, T., and E. T. Yeh. Identification of three sentrinization sites in PML. J Biol Chem 273: 26675–26682, 1998.

    PubMed  CAS  Google Scholar 

  74. Kamitani, T., H. P. Nguyen, and E. T. Yeh. Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J Biol Chem 272: 14001–14004, 1997.

    PubMed  CAS  Google Scholar 

  75. Kekelar, A., and C. B. Thompson. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 8: 324–330, 1998.

    Google Scholar 

  76. Kerr, J. F. R. Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105: 13–20, 1971.

    PubMed  CAS  Google Scholar 

  77. Kerr, J. F. R., A. H. Wyllie, and A. R. Currie. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257, 1972.

    PubMed  CAS  Google Scholar 

  78. Kiriakidou, M., D. A. Driscoll, J. M. Lopez-Guisa, and J. F. Strauss. Cloning and expression of primate Daxx cDNAs and mapping of the human gene to chromosome 6p21.3 in the MHC region. DNA Cell Biol 16: 1289–1298, 1997.

    PubMed  CAS  Google Scholar 

  79. Kischkel, F. C., S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita, P. H. Krammer, and M. E. Peter. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 14: 5579–5588, 1995.

    PubMed  CAS  Google Scholar 

  80. Kitson, J., T. Raven, Y. P. Jiang, D. V. Goeddel, K. M. Giles, K. T. Pun, C. J. Grinham, R. Brown, and S. N. Farrow. A death-domain-containing receptor that mediates apoptosis. Nature 384: 372–375, 1996.

    PubMed  CAS  Google Scholar 

  81. Kolesnick, R. N., and M. Krönke. Regulation of ceramide production and apoptosis. Ann Rev Physiol 60: 643–665, 1998.

    CAS  Google Scholar 

  82. Kroemer, G., B. Dallaporta, and M. Resche-Rigon. The mitochondrial death/life regulator in apoptosis and necrosis. Ann Rev Physiol 60: 619–642, 1998.

    CAS  Google Scholar 

  83. Kroemer, G., N. Zamzami, and S. A. Susin. Mitochondrial control of apoptosis. Immunol Today 18: 44–51, 1997.

    PubMed  CAS  Google Scholar 

  84. Krown, K. A., M. T. Page, C. Nguyen, D. Zechner, V. Gutierrez, K. L. Comstock, C. C. Glembotski, P. J. E. Quintana, and R. A. Sabbadini. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes-Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98: 2854–2865, 1996.

    PubMed  CAS  Google Scholar 

  85. Kubota, T., C. F. McTieman, C. S. Frye, A. J. Demetris, and A. M. Feldman. Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice. J Card Fail 3: 117–24, 1997.

    PubMed  CAS  Google Scholar 

  86. Kubota, T., C. F. McTiernan, C. S. Frye, S. E. Slawson, B. H. Lemster, A. P. Koretsky, A. J. Demetris, and A. M. Feldman. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81: 627–35, 1997.

    PubMed  CAS  Google Scholar 

  87. Kubota, T., M. Miyagishima, G. S. Bounutas, C. F. McTiernan, and A. M. Feldman. Overexpression of tumor necrosis factor-a activates the expression of multiple members of the apoptosis pathway in transgenic mice. Circulation 98: 1–462, 1998.

    Google Scholar 

  88. Lacey, D. L., E. Timms, H. L. Tan, M. J. Kelley, C. R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Sully, and A. L. Et, Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165–176, 1998.

    PubMed  CAS  Google Scholar 

  89. Ledgerwood, E. C., J. B. Prins, N. A. Bright, D. R. Johnson, K. Wolfreys, J. S. Pober, S. O’Rahily, and J. R. Bradley. Tumor necrosis factor is delivered to mitochondria where a tumor necrosis factor-binding protein is localized. Lab Invest 78: 1583–1589, 1998.

    PubMed  CAS  Google Scholar 

  90. Lee, S. Y., S. Y. Lee, and Y. Choi. TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)-and CD30-TRAF signaling complexes that inhibits TRAF2-mediated NF-kB activation. J Exp Med 185: 1275–1285, 1997.

    PubMed  CAS  Google Scholar 

  91. Liang, H., and S. W. Fesik. Three-dimensional structures of proteins involved in programmed cell death. J Mol Biol 274: 291–302, 1997.

    PubMed  CAS  Google Scholar 

  92. Liepinsh, E., L. L. Hag, G. Otting, and C. F. Ibanez. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J 16: 4999–5005, 1997.

    PubMed  CAS  Google Scholar 

  93. Liu, C., J. Cheng, and J. D. Mountz. Differential expression of human Fas mRNA species upon peripheral blood mononuclear cell activation. Biochem J 310: 957–963, 1995.

    PubMed  CAS  Google Scholar 

  94. Liu, Y., E. Cigola, W. Cheng, J. Kajastura, G. Olivetti, T. H. Hintze, and P. Anversa. Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73: 771–787, 1995.

    PubMed  CAS  Google Scholar 

  95. Liu, Z.-G., H. Hsu, D. Goeddel, and M. Karin. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kB activation prevents cell death. Cell 87: 565–576, 1996.

    PubMed  CAS  Google Scholar 

  96. MacFarlane, M., M. Ahmad, S. M. Srinivasula, T. Fernandes-Alnemri, G. M. Cohen, and E. S. Alnemri. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J BiolChem 272: 25417–25420, 1997.

    CAS  Google Scholar 

  97. Malinin, N. L., M. P. Boldin, A. V. Kovalenko, and D. Wallach. MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1. Nature 385: 540–544, 1997.

    PubMed  CAS  Google Scholar 

  98. Marsters, S. A., J. P. Sheridan, C. J. Donahue, R. M. Pitti, C. L. Gray, A. D. Goddard, K. D. Bauer, and A. Ashkenazi. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kB. Current Biol 6: 1669–1676, 1996.

    CAS  Google Scholar 

  99. Marsters, S. A., J. P. Sheridan, R. M. Pitti, J. Brush, A. Goddard, and A. Ashkenazi. Identification of a ligand for the death-domain-containing receptor Apo-3. Curr Biol 8: 525–528, 1998.

    PubMed  CAS  Google Scholar 

  100. Marsters, S. T., J. P. Sheridan, R. M. Pitti, A. Huang, M. Skubatch, D. Baldwin, J. Yuan, A. Gurney, A. D. Goddard, P. Godowski, and A. Ashkenazi. A novel receptor for Apo-2L/TRAIL contains a truncated death domain. Curr Biol 7: 1003–1006, 1997.

    PubMed  CAS  Google Scholar 

  101. Marzo, I., C. Brenner, N. Zamzami, S. A. Susin, G. Beutner, D. Brdiczka, R. Remy, Z.-H. Xie, J. C. Reed, and G. Kroemer. The permeability pore complex: A target for apoptosis regulation by caspases and Bcl-2-related proteins. J Exp Med 187: 1261–1271, 1998.

    PubMed  CAS  Google Scholar 

  102. Marzo, I., S. A. Susin, P. X. Petit, and L. Ravagnan. Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 427: 198–202, 1998.

    PubMed  CAS  Google Scholar 

  103. Meakin, S. O., and E. M. Shooter. The nerve growth factor family of receptors. Trends Neurosci 15: 323–331, 1992.

    PubMed  CAS  Google Scholar 

  104. Medetna, J. P., C. Scaffidi, F. C. Hischkel, A. Shevchenko, M. Mann, P. H. Krammer, and M. E. Peter. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). Embo J 16: 2794–2804, 1997.

    Google Scholar 

  105. Meredith, J. E., and M. A. Schwartz. Integrins, adhesion and apoptosis. Trends Cell Biol 7: 146–150, 1997.

    CAS  Google Scholar 

  106. Mohler, K. M., D. S. Torrance, C. A. Smith, R. G. Goodwin, K. E. Stremler, V. F. Fung, H. Madami, and M. B. Widmer. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 151: 1548–1561, 1993.

    PubMed  CAS  Google Scholar 

  107. Mongkolsapaya, J., A. E. Cowper, X. N. Xu, G. Morris, A. J. McMichael, J. J. Bell, and G. R. Screaton. Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J Immunol 160: 3–6, 1997.

    Google Scholar 

  108. Morinaga, T., N. Nakagawa, T. Yasuda, E. Tsuda, and K. Higashio. Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis-inhibitory factor. Eur J Biochem 254: 685–691, 1998.

    PubMed  CAS  Google Scholar 

  109. Moss, M. L., S. L. C. Jin, M. E. Milla, W. Burkhart, H. L. Carter, W. J. Chen, W. C. Clay, J. R. Didsbury, D. Hassler, C. R. Hoffman, T. A. Kost, M. H. Lambert, M. A. Leesnitzer, P. McCauley, G. McGeehan, J. Mitchell, M. Moyer, G. Pahel, W. Rocque, L. K. Overton, F. Schoenen, T. Seaton, J. L. Su, J. Warner, D. Willard, and J. D. Becherer. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature 385: 733–736, 1997.

    PubMed  CAS  Google Scholar 

  110. Muellberg, J., F. H. Durie, C. Otten-Evans, M. R. Alderson, S. Rose-John, D. Cosman, R. A. Black, and K. M. Mohler. A metalloprotease inhibitor blocks shedding of the IL-6 receptor and the p60 TNF receptor. J Immunol 155: 5198–5205, 1995.

    Google Scholar 

  111. Muzio, M., J. Ni, P. Feng, and V. M. Dixit. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278: 1612–1615, 1997.

    PubMed  CAS  Google Scholar 

  112. Nagata, S. Fas and Fas ligand: a death factor and its receptor. Adv Immunol 57: 129–-, 1994.

    PubMed  CAS  Google Scholar 

  113. Nagata, S., and P. Golstein. The Fas death factor. Science 267: 1449–1456, 1995.

    PubMed  CAS  Google Scholar 

  114. Nagato, S. Apoptosis by death factor. Cell 88: 355–365, 1997.

    Google Scholar 

  115. Newton, K., A. H. Harris, M. L. Barth, K. G. C. Smith, and A. Strasser. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 18: 706–718, 1998.

    Google Scholar 

  116. Oehm, A., I. Behrmann, W. Falk, M. Pawlita, G. Maier, C. Klas, M. Li-Weber, S. Richards, J. Dhein, B. C. Trauth, H. Ponstingl, and P. H. Krammer. Purification and molecular cloning of the APO-1 cell surface antigen, a new member of the TNF/NGF receptor superfamily: sequence identity with the Fas antigen. J Biol Chem 267: 10709–10715, 1992.

    PubMed  CAS  Google Scholar 

  117. Okura, T., L. Gong, T. Kamitani, T. Wada, I. Okura, C. F. Wei, H. M. Chang, and E. T. Yeh. Protection against Fas/Apo-1-and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 15: 4277–4288, 1996.

    Google Scholar 

  118. Opipari, A. W., H. M. Hu, R. Yabkowitz, and V. M. Dixit. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 267: 12424–12427, 1992.

    PubMed  CAS  Google Scholar 

  119. Orlinick, J. R., A. Vaishnaw, K. B. Elkon, and M. v. Chao. Requirement of cysteine-rich repeats of the Fas receptor for binding the Fas ligand. J Biol Chem 272: 28889–28894, 1997.

    PubMed  CAS  Google Scholar 

  120. Pan, G., J. H. Bauer, V. Haridas, S. Wang, D. Liu, G. Yu, C. Vincenz, B. B. Aggarwal, J. Ni, and V. M. Dixit. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 431: 351–356, 1998.

    PubMed  CAS  Google Scholar 

  121. Pan, G., J. Ni, Y. F. Wei, Q. L. Yu, R. Gentz, and V. M. Dixit. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277: 815–818, 1997.

    PubMed  CAS  Google Scholar 

  122. Pan, G., J. Ni, G. L. Yu, Y. F. Wei, and V. M. Dixit. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 424: 41–45, 1998.

    PubMed  CAS  Google Scholar 

  123. Pan, G., K. O’Rourke, A. M. Chinnaiyan, R. Gentz, R. Ebner, J. Ni, and V. M. Dixit. The receptor for the cytotoxic ligand TRAIL. Science 276: 111–113, 1997.

    PubMed  CAS  Google Scholar 

  124. Pan, G. H., K. O’Rourke, and V. M. Dixit. Caspase-9, Bcl-xL, and Apaf-1 form a ternary complex. J Biol Chem 273: 5841–5845, 1998.

    PubMed  CAS  Google Scholar 

  125. Papoff, G., I. Cascino, A. Eramo, G. Starace, D. H. Lynch, and G. Ruberti. An N-terminal domain shared by Fas/Apo-1 (CD95) soluble variants prevents cell death in vitro. J Immunol 156: 4622–4630, 1996.

    PubMed  CAS  Google Scholar 

  126. Pasqualini, R., E. Koivunen, and E. Ruoslahti. A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol 130: 1189–1196, 1995.

    PubMed  CAS  Google Scholar 

  127. Peter, M. E., and P. E. Krammer. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10: 545–551, 1998.

    PubMed  CAS  Google Scholar 

  128. Pitti, R. M., S. A. Marsters, D. A. Lawrence, M. Roy, F. C. Kischkel, P. Dowd, A. Huang, C. J. Donahue, S. W. Sherwood, A. L. Gurney, K. J. Hillan, R. L. Cohen, A. D. Goddard, D. Botstein, and A. Ashkenazi. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396: 699–703, 1998.

    PubMed  CAS  Google Scholar 

  129. Pitti, R. M., S. A. Marsters, S. Ruppert, C. J. Donahue, A. Moore, and A. Ashkenazi. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271: 12687–12690, 1996.

    PubMed  CAS  Google Scholar 

  130. Ruoslahti, E. RGD and other recognition sequences for integrins. Ann Rev Cell Dev Biol 12: 697–715, 1996.

    CAS  Google Scholar 

  131. Ruoslahti, E., and J. Reed. New way to activate caspases. Nature 397: 479–480, 1999.

    PubMed  CAS  Google Scholar 

  132. Sato, T., S. Irie, S. Kitada, and J. C. Reed. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 268: 411–415, 1995.

    PubMed  CAS  Google Scholar 

  133. Scaffidi, C., S. Fulda, A. Srinivasan, C. Friesen, F. Li, K. J. Tomaselli, K. M. Debatin, P. H. Krammer, and M. E. Peter. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675–1687, 1998.

    PubMed  CAS  Google Scholar 

  134. Schall, T. J., M. Lewis, K. J. Koller, A. Lee, G. C. Rice, G. H. W. Wong, T. Gatanaga, G. A. Granger, R. Lentz, H. Raab, W. J. Kohr, and D. V. Goeddel. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61: 361–370, 1990.

    PubMed  CAS  Google Scholar 

  135. Schneider, P., J. L. Bodmer, M. Thome, K. Hofmann, N. Holler, and J. Tschopp. Characterization of two receptors for TRAIL. FEBS Lett 416: 329–334, 1997.

    PubMed  CAS  Google Scholar 

  136. Schneider, P., M. Thome, K. Burns, J. L. Bodmer, K. Hofmann, T. Kataoka, N. Holler, and J. Tschopp. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kB. Immunity 7: 831–836, 1997.

    PubMed  CAS  Google Scholar 

  137. Schreck, R., K. Albermann, and P. A. Baeuerle. Nuclear factor kappa B: an oxidative stress-response transcription factor of eukaryotic cells. Free Rad Res Comm 17: 221–227, 1992.

    CAS  Google Scholar 

  138. Schuchmann, M., S. Hess, P. Bufler, C. Brakebusch, D. Wallach, A. Porter, G. Riethmuelter, and H. Engelmann. Functional discrepancies between tumor necrosis factor and lymphotoxin α explained by trimer stability and distinct receptor interactions. Eur J Immunol 25: 2183–2189, 1995.

    PubMed  CAS  Google Scholar 

  139. Schulze-Osthoff, K., D. Ferrari, M. Los, S. Wesselborg, and M. E. Peter. poptosis signaling by death receptors. Eur J Biochem 254: 439–459, 1998.

    PubMed  CAS  Google Scholar 

  140. Schumann, H., H. Morawietz, K. Hakim, H. R. Zerkowski, T. Eschenhagen, J. Holtz, and D. Darmer. Alternative splicing of the primary Fas transcript generating soluble Fas antagonists is suppressed in the failing human ventricular myocardium. Biochem Biophys Res Comm 239: 794–798, 1997.

    PubMed  CAS  Google Scholar 

  141. Screaton, G. R., J. Monkolsapaya, X. N. Xu, A. E. Cowper, A. J. McMichael, and J. L. Bell. TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. CurrBiol 7: 693–696, 1997.

    CAS  Google Scholar 

  142. Screaton, G. R., X. N. Xu, A. L. Olsen, A. E. Cowper, R. Tan, A. J. McMichael, and J. I. Bell. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci 94: 4615–4619, 1997.

    PubMed  CAS  Google Scholar 

  143. Sheridan, J. P., S. A. Marsters, R. M. Pitti, A. Gurney, M. Skubatch, D. Baldwin, L. Ramakrishnan, C. L. Gray, K. Baker, W. I. Wood, A. D. Goddard, P. Godowski, and A. Ashkenazi. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277: 818–821, 1997.

    PubMed  CAS  Google Scholar 

  144. Shu, H. B., D. R. Halpin, and D. V. Goeddel. Casper is a FADD-and caspase-related inducer of apoptosis. Immunity 6: 751–763, 1997.

    PubMed  CAS  Google Scholar 

  145. Shu, H. B., M. Takeuchi, and D. V. Goeddel. The tumor necrosis factor receptor 2 signal transducers TRAF2 and cIAPI are components of the tumor necrosis factor 1 signaling complex. Proc Natl Acad Sci 93: 13973–13978, 1996.

    PubMed  CAS  Google Scholar 

  146. Siegel, R. M., D. A. Martin, L. Zheng, S. Y. Ng, J. Berlin, J. Cohen, and M. J. Lenardo. Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger apoptosis. J Cell Biol 141: 1243–1253, 1998.

    PubMed  CAS  Google Scholar 

  147. Simonet, W. S., D. L. Lacey, C. R. Dunstan, M. Kelley, M. S. Chang, R. Luthy, H. Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Colombero, H. L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gegg, T. M. Hughes, D. Hill, W. Pattison, P. Campbell, S. Sander, G. Van, J. Tarpley, P. Derby, R. Lee, A. E. Program, and W. J. Boyle. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319, 1997.

    PubMed  CAS  Google Scholar 

  148. Smith, C. A., T. Davis, D. Anderson, L. Solam, M. P. Beckmann, R. Jerzy, S. K. Dower, D. Cosman, and R. G. Goodwin. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248: 1019–1023, 1990.

    PubMed  CAS  Google Scholar 

  149. Song, H. Y., J. D. Dunbar, and D. B. Donner. Aggregation of the intracellular domain of the type 1 tumor necrosis factor receptor defined by the two-hybrid system. J Biol Chem 269: 22492–22495, 1994.

    PubMed  CAS  Google Scholar 

  150. Srinivasula, S. M., M. Ahmad, S. Ottilie, F. Bullrich, S. Banks, T. Fernandes-Alnemri, C. M. Croce, G. Litwack, K. J. Tomaselli, R. C. Armstrong, and E. S. Ainemeri. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR 1-induced apoptosis. J Biol Chem 272: 18542–18545, 1997.

    PubMed  CAS  Google Scholar 

  151. Stankovski, I., and D. Baltimore. NF-kB activation: the IkB kinase revealed? Cell 91: 299–302, 1997.

    Google Scholar 

  152. Steemans, M., V. Goossens, M. Van de Craen, F. Van Heereweghe, K. Vancompernolle, K. De Vos, P. Vandenabeele, and J. Groten. A caspase-activated factor (CAF) induces mitochondrial membrane depolarization and cytochrome c release by a nonproteolytic mechanism. J Exp Med 188: 2193–2198, 1998.

    PubMed  CAS  Google Scholar 

  153. Suda, T., T. Takahashi, P. Goldstein, and S. Nagata. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178, 1993.

    PubMed  CAS  Google Scholar 

  154. Susin, S. A., H. K. Lorenzo, N. Zamzami, I. Marzo, C. Brenner, N. Larochette, M. C. Prévost, P. M. Aizari, and G. Kroemer. Mitochondrial release of caspase-2 and-9 during the apoptotic process. J Exp Med 189: 381–393, 1999.

    PubMed  CAS  Google Scholar 

  155. Susin, S. A., H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffier, N. Larochette, D. R. Goodletti, R. Aebersold, D. P. Siderovski, J. M. Penninger, and G. Kroemer. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446, 1999.

    PubMed  CAS  Google Scholar 

  156. Susin, S. A., N. Zamzami, M. Castedo, T. Hirsch, P. Marchetti, A. Macho, E. Daugas, M. Geuskens, and G. Kroemer. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184: 1331–1341, 1996.

    PubMed  CAS  Google Scholar 

  157. Susin, S. A., N. Zamzami, and G. Kroemer. Mitochondrial regulation of apoptosis: doubt no more. Biochim Biophys Acta 1366: 151–165, 1998.

    PubMed  CAS  Google Scholar 

  158. Tanaka, M., H. Ino, K. Ohno, K. Hattori, W. Sato, T. Ozawa, T. Tanaka and S. Itoyama. Mitochondrial mutation in fatal infantile cardiomyopathy. Lancet 336: 1452, 1990.

    PubMed  CAS  Google Scholar 

  159. Tanaka, M., T. Itai, M. Adachi, and S. Nagata. Downregulation of Fas ligand by shedding. Nature Med 4: 31–36, 1998.

    PubMed  CAS  Google Scholar 

  160. Tartaglia, A. T., D. Pennica, and D. V. Goeddel. Ligand passing the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem 268: 18542–18548, 1993.

    PubMed  CAS  Google Scholar 

  161. Tartaglia, L. A., T. M. Ayres, G. H. W. Wong, and D. V. Goeddel. A novel domain within the 55 kD TNF receptor signals cell death. Cell 74: 845–853, 1993.

    PubMed  CAS  Google Scholar 

  162. Tartaglia, L. A., M. Rothe, Y. F. Hu, and D. V. Goeddel. Tumor necrosis factor’s cytotoxic activity is signaled by the p55 TNF receptor. Cell 73: 213–216, 1993.

    PubMed  CAS  Google Scholar 

  163. Thoma, B., M. Grell, K. Pfizenmaier, and P. Scheurich. Identification of a 60 kDa tumor necrosis factor (TNF) receptor as the major signal transducing component in TNF responses. J Exp Med 172: 1019–1023, 1990.

    PubMed  CAS  Google Scholar 

  164. Thornberry, N. A., and Y. Lazebnik. Caspases: enemies within. Science 281: 1313–1316, 1998.

    Google Scholar 

  165. Torre-Amione, G., S. Kapadia, J. Lee, J. B. Durand, R. D. Bies, J. B. Young, and D. L. Mann. Tumor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation 93: 704–711, 1996.

    PubMed  CAS  Google Scholar 

  166. Trauth, B. C., C. Klas, A. M. J. Peters, S. Matzku, P. Moeller, W. Falk, K. M. Debatin, and P. H. Krammer. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301–305, 1989.

    PubMed  CAS  Google Scholar 

  167. Tsuda, E., M. Goto, S. I. Mochiguzi, K. Yano, F. Kobayashi, T. Morinaga, and K. Higashio. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Comm 234: 137–142, 1997

    PubMed  CAS  Google Scholar 

  168. Uren, A. G., M. Pakusch, C. J. Hawkins, K. L. Puls, and D. L. Vaux. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc Natl Acad Sci 93: 4974–4978, 1996.

    PubMed  CAS  Google Scholar 

  169. Uren, A. G., and D. L. Vaux. Viral inhibitors of apoptosis. Vitam Horm 53: 175–193, 1997.

    PubMed  CAS  Google Scholar 

  170. Van Antwerp, D. J., S. J. Martin, T. Kafri, D. R. Green, and I. M. Verma. Suppression of TNF-α-induced apoptosis by NF-kB. Science 274: 787–789, 1996.

    PubMed  Google Scholar 

  171. Walczak, H., M. A. Degli-Esposti, R. S. Johnson, P. J. Smolak, J. Y. Waugh, N. Bioani, M. S. Timour, M. J. Gerhart, K. A. Schooley, C. A. Smith, R. G. Goodwin, and C. T. Rauch. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. Embo J 16: 5386–5397, 1997.

    PubMed  CAS  Google Scholar 

  172. Wallach, D., A. V. Kovalenko, E. E. Vasfolomeev, and M. P. Boldin. Death-inducing functions of ligands of the tumor necrosis factor family: a Sanhedrin verdict. Curr Opin Immunol 10: 279–288, 1998.

    PubMed  CAS  Google Scholar 

  173. Wang, C. Y., M. W. Mayo, and A. S. Baldwin. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kB. Science 274: 784–787, 1996.

    PubMed  CAS  Google Scholar 

  174. Warzowa, K., P. Ribeiro, C. Chariot, N. Renard, B. Coiffier, and G. Salles. A new death receptor 3 isoform: expression in human lymphoid cell lines and non-Hodgkin’s iymphomas. Biochem Biophys Res Comm 242: 376–379, 1998.

    Google Scholar 

  175. Weiss, T., M. Grell, K. Siemienski, F. Muhlenbeck, H. Durkop, K. Pfizenmaier, P. Scheurich, and H. Wajant. TNFR80-dependent enhancement of TNFR60-induced cell death is mediated by TNFR60-associated factor 2 and is specific for TNFR60. J Immunol 161: 3136–3142, 1998.

    PubMed  CAS  Google Scholar 

  176. Wiegmann, K., S. Schuetze, T. Machleidt, D. Witte, and M. Kroenke. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78: 1005–1015, 1994.

    PubMed  CAS  Google Scholar 

  177. Wiley, S. R., K. Schooley, P. J. Smolak, W. S. Din, C. P. Huang, J. K. Nicholl, G. R. Sutherland, T. D. Smith, C. Rauch, C. A. Smith, and R. G. Goodwin. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673–682, 1995.

    PubMed  CAS  Google Scholar 

  178. Wong, B. R., J. Rho, J. Arron, E. Robinson, J. Orlinick, M. Chao, S. Kalachikov, E. Cayani, F. S. Bartlett, W. N. Frankel, S. Y. Lee, and Y. Choi. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272: 25190–25194, 1997.

    PubMed  CAS  Google Scholar 

  179. Wu, G. S., T. F. Burns, E. R. McDonald, W. Jiang, R. Meng, I. D. Krantz, G. Kao, D. D. Gan, J. Y. Zhou, R. Muschel, S. R. Hamilton, N. B. Spinner, S. Markowitz, G. Wu, and W. S. el-Deiry. Killer/DR5 is DNA damage-inducible p53-regulated death receptor gene. Nature Genet 17: 141–143, 1997.

    PubMed  CAS  Google Scholar 

  180. Yamaguchi, K., M. Kinosaki, M. Goto, F. Kobayashi, E. Tsuda, T. Morinaga, and K. Higashio. Characterization of structural domains of osteoclastogenesis inhibitory factor. J Biol Chem 273: 5117–5123, 1998.

    PubMed  CAS  Google Scholar 

  181. Yanagisawa, J., M. Takahashi, H. Kanki, H. Yano-Yanagisawa, T. Tazunoki, E. Sawa, T. Nishitoba, M. Kamishohara, E. Kobayashi, S. Kataoka, and T. Sato. The molecular interaction of Fas and FAP-l: a tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. J Biol Chem 272: 8539–8545, 1997.

    PubMed  CAS  Google Scholar 

  182. Yasuda, H., N. Shima, N. Nakagawa, S. I. Mochizuki, K. Yano, N. Fujise, Y. Sato, M. Goto, K. Yamaguchi, M. Kuriyama, T. Kanno, A. Murakami, E. Tsuda, T. Morinaga, and K. Higashio. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG-OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139: 1329–1337, 1998.

    PubMed  Google Scholar 

  183. Yonehara, S., A. Ishii, and M. Yonehara. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen downregulated with the receptor of tumor necrosis factor. J Exp Med 169: 1747–1756, 1989.

    PubMed  CAS  Google Scholar 

  184. Yue, T. L., X. L. Ma, X. Wang, A. M. Romanic, G. L. Liu, C. Louden, J. L. Gu, S. Kumar, G. Poste, R. R. Ruffolo, and G. Z. Feuerstein. Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 82: 166–174, 1998.

    PubMed  CAS  Google Scholar 

  185. Zornig, M., A. O. Hueber, and G. Evan. p53-dependent impairment of T-cell proliferation in FADD dominant negative transgenic mice. Curr Biol 8: 467–470, 1998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Holtz, J., Darmer, D. (2000). Death receptors and their ligands. In: Schunkert, H., Riegger, G.A.J. (eds) Apoptosis in Cardiac Biology. Basic Science for the Cardiologist, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-38143-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-38143-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8648-3

  • Online ISBN: 978-0-585-38143-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics