Major Depression and Activation of The Inflammatory Response System

  • Michael MaesEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 461)


Contemporary models of major depression emphasize the role of hypothalamic-pituitary-adrenal (HPA)-axis hyperactivity and of dysfunctions in the turnover of serotonin (5-HT) or catecholamines in the etiopathogenesis of major depression. Contemporary models of major depression do not incorporate the effects of the inflammatory response system (IRS), even though the IRS powerfully influences HPA-axis activity, 5-HT and catecholaminergic turnover and even though activation of the IRS may induce depression-like behavior in animals and humans. There is now evidence that major depression is accompanied by a moderate activation of the IRS (reviews: Maes, 1993; 1995; 1997; Maes, Smith, & Scharpe, 1995c; Holden, Pakula, & Mooney, 1997; Maes & Smith, 1997; Connor & Leonard, 1998; Maier & Watkins, 1998). In this paper we propose a concise IRS model of major depression.


Proinflammatory Cytokine Major Depression Cholesteryl Ester Acute Phase Protein Acute Phase Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. B., Lawson, S., Sanigorski, A., & Sinclair, A. J. (1996). Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids, 3I(Suppl), S157–161.CrossRefGoogle Scholar
  2. Ahmed, S. A., Penhale, W. J., & Talal, N. (1985). Sex hormones, immune responses, and autoimmune diseases. American Journal of Pathology, 21, 531–551.Google Scholar
  3. Anisman, H., Kokkinidis, L., Borowski, T., & Merali, Z. (1998). Differential effects of interleukin (IL)-lbeta, IL-2, and IL-6 on responding for rewarding lateral hypothalamic stimulation. Brain Research, 779, 177–187.PubMedCrossRefGoogle Scholar
  4. Athreya, B. H., Pletcher, J., Zulian, F., Weiner, D. B., & Williams, W. V. (1993). Subset-specific effects of sex hormones and pituitary gonadotropins on human lymphocyte proliferation in vitro. Clinical Immunology and Immunopathology, 66, 201–211.PubMedCrossRefGoogle Scholar
  5. Aune, T. M., Golden, H. W., & McGrath, K. M. (1994). Inhibitors of serotonin synthesis and antagonists of serotonin 1A receptors inhibit T lymphocyte function in vitro and cell-mediated immunity in vivo. Journal of Immunology, 153, 489–498.Google Scholar
  6. Bagdade, J. D. & Subbaiah, P. V. (1988). Influence of low-estrogen-containing oral contraceptives on lipoprotein phospholipid composition and mononuclear cell membrane fluidity. Journal of Clinical Endocrinology and Metabolism, 66, 857–861.PubMedGoogle Scholar
  7. Bengtsson, B.-O., Zhu, J., Thorell, L.-H., Olsson, T., Link, H., & Walinder, J. (1992). Effects of zimeldine and its metabolites, clomipramine, imipramine, and maprotiline in experimental allergic neuritis in Lewis rats. Journal of Neuroimmunology, 39, 109–122.PubMedCrossRefGoogle Scholar
  8. Berk, M., Wadee, A. A., Kuschke, R. H., & O’Neill-Kerr, A. (1997). Acute phase proteins in major depression. Journal of Psychosomatic Research, 43, 529–534.PubMedCrossRefGoogle Scholar
  9. Berkenbosch, F., Oers, J., & del Rey, A. D. (1987). Corticotropin-releasing-factor-producing neurons in the rat activated by interleukin-1. Science, 238, 524–526.PubMedCrossRefGoogle Scholar
  10. Bonaccorso, S., Lin, A., Verkerk, R., VanHunsel, F., Libbrecht, I., Scharpé, S., DeClerck, L., Stevens, W., Biondi, M., Janca, A., & Maes, M. (1998). Immune markers in fibromyalgia: comparison with major depressed patients and normal volunteers. Journal of Affective Disorders, 48, 75–82.PubMedCrossRefGoogle Scholar
  11. Bondesson, L., Nordlind, K., Liden, S., & Sundstrom, E. (1993). Inhibiting effects of serotonin and serotonin antagonists on the migration of mononuclear leucocytes. Immunopharmacology and Immunotoxicology, 15, 243–250.PubMedCrossRefGoogle Scholar
  12. Brock, J.H. (1994). Iron in infection, immunity, inflammation, and neoplasia. In J. H. Brock, J. W. Halliday, M. J. Pippard, & L. W. Powell (Eds.), Iron Metabolism in Health and Disease (pp. 353–390). London: W. B. Saunders Company Ltd.Google Scholar
  13. Calabrese, J. R., Skwerer, R. G., Barna, B., Gulledge, A. D., Valenzuela, R., Butkus, A., Subichin, S., & Krupp, N. E. (1986). Depression, immunocompetence, and prostaglandins of the E series. Psychiatry Research, 17, 41–47.PubMedCrossRefGoogle Scholar
  14. Carmeliet, P., Vankelecom, H., Van Damme, J., Billiau, A., & Denef, C. (1991). Release of interleukin-6 from anterior pituitary cell aggregates: developmental pattern and modulation by glucocorticoids and forskolin. Neuroendocrinology, 53, 29–34.PubMedGoogle Scholar
  15. Cid, M. C., Kleinman, H. K., Grant, D. S., Schnaper, H. W., Fauci, A. S., & Hoffman, G. S. (1994). Estradiol enhances leukocyte binding to tumor necrosis factor-stimulated endothelial cells via an increase in TNF-induced adhesion molecules E-selectin, intercellular adhesion molecule type 1, and vascular cell adhesion molecule type 1. Journal of Clinical Investigation, 93, 17–25.PubMedGoogle Scholar
  16. Clement, H. W., Buschmann, J., Rex, S., Grote, C., Opper, C., Gemsa, D., & Wesemann, W. (1997). Effects of interferon-gamma, interleukin-1 beta, and tumour necrosis factor-alfa on the serotonin metabolism in the nucleus raphe dorsalis of the rat. Journal of Neural Transmission, 104, 981–991.PubMedCrossRefGoogle Scholar
  17. Connor, T. J. & Leonard, B.E. (1998). Depression, stress, and immunological activation: the role of cytokines in depressive disorders. Life Sciences, 62, 583–606.PubMedCrossRefGoogle Scholar
  18. Connor, T. J., Song, C., Leonard, B. E., Merali, Z., & Anisman, H. (1998). An assessment of the effects of central interleukin-1 beta,-2,-6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine, and immune parameters in the rat. Neuroscience. 84, 923–933.PubMedCrossRefGoogle Scholar
  19. Cousins, R. J. & Leinart, A. S. (1988). Tissue-specific regulation of zinc metabolism and metallothionein genes by interleukin-1. FASEB Journal, 2, 2884–2890.PubMedGoogle Scholar
  20. Cunnane, S. C., Yang, J., & Chen, Z. Y. (1993). Low zinc intake increases apparent oxidation of linoleic and alpha-linolenic acids in the pregnant rat. Canadian Journal of Physiology and Pharmacology, 71, 205–210.PubMedGoogle Scholar
  21. Dantzer, R., Bluthé, R. M., Laye, S., Bret-Dibat, J. L., Parnet, P., & Kelley, K. W. (1998). Cytokines and sickness behavior. Annals of the New York Academy of Sciences, 840, 586–590.PubMedCrossRefGoogle Scholar
  22. Deger, O., Bekaroglu, M., Orem, A., Orem, S., Uluutku, N., & Soylu, C. (1996). Polymorphonuclear (PMN) elastase levels in depressive disorders. Biological Psychiatry, 39, 357–363.PubMedCrossRefGoogle Scholar
  23. De Groote, D., Zangerle, P. F., Gevaert, Y., Fassotte, M. F., Beguin, Y., Noizat-Pirenne, F., Pirenne, J., Gathy, R., Lopez, M., Dehart, I., Igot, D., Baudrihaye, M., Delacroix, D., & Franchimont, P. (1992). Direct stimulation of cytokines (IL-1β, TNF-α, IL-6, IL-2, IFN-γ, and GM-CSF) in whole blood. I. Comparison with isolated PBMC stimulation. Cytokine, 4, 239–248.PubMedCrossRefGoogle Scholar
  24. De Groote, D., Gevaert, Y., Lopez, M., Gathy, R., Fauchet, F., Dehart, I., Jadoul, M., Radoux, D., & Franchimont, P. (1993). Novel method for the measurement of cytokine production by one-stage procedure. Journal of Immunological Methods, 9, 259–267.CrossRefGoogle Scholar
  25. Dobbin, J. P., Harth, M., McCain, G. A., Martin, R. A., & Cousin, K. (1991). Cytokine production and lymphocyte transformation during stress. Brain, Behavior and Immunity, 5, 339–348.CrossRefGoogle Scholar
  26. Dubuis, J. M., Dayer, J. M., Siegrist-Kaiser, C. A., & Burger, A. G. (1988). Human recombinant interleukin-1β decreases plasma thyroid hormone and thyroid stimulating hormone levels in rats. Endocrinology, 725, 2175–2181.Google Scholar
  27. Duch, D. S., Woolf, J. H., Nichol, C. A., Davidson, J. R., & Garbutt, J. C. (1984). Urinary excretion of biopterin and neopterin in psychiatric disorders. Psychiatry Research, 11, 83–89.PubMedCrossRefGoogle Scholar
  28. Dugué, B., Leppanen, E. A., Teppo, A. M., Fyrquist, F., & Gräsbeck, R. (1993). Effects of psychological stress on plasma interleukins-1 and beta and 6, C-reactive protein, tumour necrosis factor alpha, anti-diuretic hormone and serum cortisol. Scandinavian Journal of Clininical Laboratory Investigation, 56, 555–561.Google Scholar
  29. Dunbar, P. R., Hill, J., Neale, T. J., & Mellsop, G. W. (1992). Neopterin measurement provides evidence of altered cell-mediated immunity in patients with depression, but not with schizophrenia. Psychological Medicine, 22, 1051–1057.PubMedGoogle Scholar
  30. Dunn, A. J. (1988). Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism parallelling the increased plasma corticosterone. Life Sciences, 43, 429–435.PubMedCrossRefGoogle Scholar
  31. Dunn, A. J., Powell, M. L., Meitin, C., & Small, P. A. Jr. (1989). Virus infection as a stressor: influenza virus elevates plasma concentrations of corticosterone, and brain concentrations of MHPG and tryptophan. Physiology and Behaviour, 45, 591–594.CrossRefGoogle Scholar
  32. Dunn, M. A. & Cousins, R. J. (1989). Kinetics of zinc metabolism in the rat: effect of dibutyryl cAMP. American Journal of Physiology, 256, 420–430.Google Scholar
  33. Endres, S. (1993). Messengers and mediators: interactions among lipids, eicosanoids, and cytokines. American Journal of Clinical Nutrition, 57, 798–800.Google Scholar
  34. Espersen, G. T., Grunnet, N., Lervang, H. H., Nielsen, G. L., Thomsen, B. S., Faarvang, K. L., Dyerberg, J., & Ernst, E. (1992). Decreased interleukin-1 beta levels in plasma from rheumatoid arthritis patients after dietary supplementation with n-3-polyunsaturated fatty acids. Clinical Rheumatology, 11, 393–395.PubMedCrossRefGoogle Scholar
  35. Fairbanks, V. F. & Beutler, E. (1988). Iron. In M. E. Shils & V. R. Young (Eds.), Modern Nutrition in Health and Disease (pp. 193–226). Philadelphia: Lea and Febiger.Google Scholar
  36. Faraj, B. A., Olkowski, Z. L., & Jackson, R. T. (1994). Expression of a high-affinity serotonin transporter in human lymphocytes. International Journal of Immunopharmacology, 16, 561–567.PubMedCrossRefGoogle Scholar
  37. Frommberger, U. H., Bauer, J., Haselbauer, P., Fraulin, A., Riemann, D., & Berger, M. (1997). Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. European Archives of Psychiatry and Clinical Neuroscience, 247, 228–233.PubMedCrossRefGoogle Scholar
  38. Fujii, T., Sato, K., Ozawa, M., Kasono, K., Imamura, H., Kanaji, Y., Tsushima, T., & Shizume, K. (1989). Effect of interleukin-1 (11-1) on thyroid hormone metabolism in mice: stimulation by 11-1 of iodothyronine 5′-deiodinating activity (type I) in the liver. Endocrinology, 124, 167–174.PubMedGoogle Scholar
  39. Giroux, E., Schechter, P. J., Schoun, J., & Sjoerdsma, A. (1977). Reduced binding of added zinc in serum of patients with decompensated hepatic cirrhosis. European Journal of Clinical Investigation, 7, 71–73.PubMedGoogle Scholar
  40. Glueck, C. J., Tieger, M., Kunkel, R., Hamer, T., Tracy, T., & Speirs, J. (1994). Hypocholesterolemia and affective disorders. American Journal of Medical Science, 308, 218–225.Google Scholar
  41. Goldblum, S. E., Cohen, D. A., Jay, M., & McClain, C. J. (1987). Interleukin 1-induced depression of iron and zinc: role of granulocytes and lactoferrin. American Journal of Physiology, 252, E27–E32.PubMedGoogle Scholar
  42. Grossman, C.J. (1985). Interactions between the gonadal steroids and the immune system. Science, 227, 257–261.PubMedCrossRefGoogle Scholar
  43. Gutterman, J. U., Fein, S., Quesada, J., Horning, S. J., Levine, J. F., Alexanian, R., Bernhardt, L., Kramer, M., Spiegel, H., Colburn, W., Trown, P., Merigan, T., & Dziewanowski, Z. (1982). Recombinant leukocyte A interferon: pharmacokinetics, single dose tolerance, and biologic effects in cancer patients. Annals of Internal Medicine, 96, 549–556.PubMedGoogle Scholar
  44. Hammerschmidt, D. E., Knabe, A. C., Silberstein, P. T., Lamche, H. R., & Coppo, P. A. (1988). Inhibition of granulocyte function by steroids is not limited to corticoids. Studies with sex steroids. Inflammation, 12, 277–284.PubMedCrossRefGoogle Scholar
  45. Herbert, T. B. & Cohen, S. (1993). Depression and immunity: a meta-analytic review. Psychological Bulletin, 113, 472–486.PubMedCrossRefGoogle Scholar
  46. Hermus, A. R. M. M., Sweep, C. G. J. F., van der Meer, M. J. M., Ross, H. A., Smals, A. G. H., Benraad, T. J., & Kloppenborg, P. W. C. (1992). Continuous infusion of interleukin-1β induces a nonthyroidal illness syndrome in the rat. Endocrinology, 131, 2139–2146.PubMedCrossRefGoogle Scholar
  47. Heyes, M. P., Saito, K., Crowley, J. S., Davis, L. E., Demitrack, M. A., Der, M., Dilling, L. A., Elia, J., Kruesi, M. J. P., Lackner, A., Larsen, S. A., Lee, K., Leonard, H. L., Markey, S. P., Martin, A., Milstein, S., Mouradian, M. M., Pranzatelli, M. R., Quearry, B. J., Salazar, A., Smith, M., Strauss, S. E., Sunderland, T., Swedo, S. W., & Tourtellotte, W. W. (1992). Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain, 115, 1249–1273.PubMedCrossRefGoogle Scholar
  48. Hibbeln, J. R. & Salem, N. (1995). Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. American Journal of Clinical Nutrition, 62, 1–9.PubMedGoogle Scholar
  49. Holden, R. J., Pakula, I. S., & Mooney, P. A. (1997). A neuroimmunological model of schizophrenia and major depression: a review. Human Psychopharmacology, 12, 177–201.CrossRefGoogle Scholar
  50. Horrobin, D. F. (1990). Essential fatty acids, psychiatric disorders and neuropathies. In D. F. Horrobin (Ed.), Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine (pp. 305–320). New York: Wiley-Liss.Google Scholar
  51. Idova, G. V. & Cheido, M. A. (1987). Stimulation of the immune response during blockade of serotonin receptors by cyproheptadine. Biull Eksp Biol Med, 103, 440–442.PubMedCrossRefGoogle Scholar
  52. Jackson, J. C., Walker, R., Brooks, W. H., & Roszman, T. L. (1988). Specific uptake of serotonin by murine macrophages. Life Sciences, 42, 641–650.CrossRefGoogle Scholar
  53. Jahnova, E. (1994). The role of serotonin in the regulation of the immune response. Bratisl Lek Listy, 95, 181–184.PubMedGoogle Scholar
  54. Joyce, P. R., Hawes, C. R., Mulder, R. T., Sellman, J. D., Wilson, D. A., & Boswell, D. R. (1992). Elevated levels of acute phase plasma proteins in major depression. Biological Psychiatry, 32, 1035–1041.PubMedCrossRefGoogle Scholar
  55. Kaptein, E. M. (1986). Thyroid hormone metabolism in illness. In G. Hennemann (Ed.), Thyroid hormone metabolism (pp. 297–334). New York: Marcel Dekker.Google Scholar
  56. Katsikis, P. D., Cohen, S. B., Londei, M., & Feldmann, M. (1995). Are CD4+ Th1 cells pro-inflammatory or anti-inflammatory? The ratio of IL-10 to IFN-gamma or IL-2 determines their function. International Immunology, 7, 1287–1294.PubMedCrossRefGoogle Scholar
  57. Khlusov, I. A., Dygai, A. M., & Gol’dberg, E. D. (1993). The adrenergic regulation of interleukin production by bone marrow cells during immobilization stress. Biull Eksp Biol Med, 116, 570–572.PubMedGoogle Scholar
  58. Knapp, P. H., Levy, E. M., Giorgi, R. G., Black, P. H., Fox, B. H., & Heeren, T. C. (1992). Short-term immunological effects of induced emotion. Psychosomatic Medicine, 54, 133–148.PubMedGoogle Scholar
  59. Kronfol, Z., Singh, V. K., Boura, J., & Brown, M. B. (1998). Cytokines and acute phase proteins in major depression: are there gender differences? Biological Psychiatry, 43, 98S.CrossRefGoogle Scholar
  60. Kubera, M., Symbirtsev, A., Basta-Kaim, A., Borycz, J., Roman, A., Papp, M., & Claesson, M. (1996). Effect of chronic treatment with imipramine on interleukin 1 and interleukin 2 production by splenocytes obtained from rats subjected to a chronic mild stress model of depression. Polish Journal of Pharmacology, 48, 503–506.PubMedGoogle Scholar
  61. Kubera, M., Holan, V., Basta-Kaim, A., Roman, A., Borycz, J., & Shani, J. (1998). Effect of desipramine on immunological parameters in mice, and their reversal by stress. Journal of Immunophamacology, in press.Google Scholar
  62. Kushner, I. (1982). The phenomenon of the acute phase response. Annals of the New York Academy of Sciences, 389, 39–48.PubMedCrossRefGoogle Scholar
  63. Lee, G. R. (1983). The anemia of chronic disease. Seminars in Hematology, 20, 61–80.PubMedGoogle Scholar
  64. LeMay, L. G., Vander, A. J., & Kluger, M. J. (1990). The effects of psychological stress on plasma interleukin-6 activity in rats. Physiology and Behavior, 47, 957–961.PubMedCrossRefGoogle Scholar
  65. Lieb, J. & Karmali, R. (1983). Elevated levels of prostaglandin E2 and thromboxane B2 in depression. Prostaglandins and Leukotrienes in Medicine, 10, 361–368.CrossRefGoogle Scholar
  66. Linthorst, A. C. & Reul, J. M. (1998). Brain neurotransmission during peripheral inflammation. Annals of the New York Academy of Sciences, 840, 139–152.PubMedCrossRefGoogle Scholar
  67. Linnoila, M., Whorton, R., Rubinow, D. R., Cowdry, R. W, Ninan, P. T., & Waters, R. N. (1983). CSF prostaglandin levels in depressed and schizophrenic patients. Archives of General Psychiatry, 40, 405–406.PubMedGoogle Scholar
  68. Little, K. Y., Castellanos, X., Humphries, L. L., & Austin, J. (1989). Altered zinc metabolism in mood disorder patients. Biological Psychiatry, 26, 646–648.PubMedCrossRefGoogle Scholar
  69. Lynch, E. A., Dinarello, C. A., & Cannon, J. G. (1994). Gender differences in IL-lα, IL-1β, and IL-1 receptor antagonist secretion from mononuclear cells and urinary excretion. Journal of Immunology, 153, 300–306.Google Scholar
  70. McCallum, J., Simons, L., Simons, J., & Friedlander, Y. (1994). Low serum cholesterol is not associated with depression in the elderly: data from an Australian community study. Australian New Zealand Journal of Medicine, 24, 561–564.PubMedGoogle Scholar
  71. McLoughlin, I. J. & Hodge, J. S. (1990). Zinc in depressive disorder. Acta Psychiatrica Scandinavica, 82, 451–453.PubMedCrossRefGoogle Scholar
  72. Maes, M. (1993). Acute phase protein alterations in major depression: A review. Reviews in the Neurosciences, 4, 407–416.PubMedGoogle Scholar
  73. Maes, M. (1995). The Interleukin hypothesis of major depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 19, 11–38.PubMedCrossRefGoogle Scholar
  74. Maes, M. (1997). The immune pathophysiology of major depression. In A. Honig & H. M. van Praag (Eds.), Depression: Neurobiological, Psychopathological, and Therapeutic Advances (pp. 197–215). London: John Wiley.Google Scholar
  75. Maes, M. & Meltzer, H.Y. M. (1995). The serotonin hypothesis of major depression. In F. Bloom & D. Kupher (Eds.), Psychopharmacology: the fourth generation of progress (pp. 933–944). New York: Raven Press.Google Scholar
  76. Maes, M. & Smith, R. (1997). Immune activation and major depression: a hypothesis. Psychiatry, Current Medical Literature Psychiatry, The Royal Society of Medicine, 9, 3–6.Google Scholar
  77. Maes, M. & Smith, R. S. (1998). Editorial: Fatty acids, cytokines, and major depression. Biological Psychiatry, 43, 319–314.Google Scholar
  78. Maes, M., Bosmans, E., Suy, E., Vandervorst, C., Dejonckheere, C., Minner, B., & Raus, J. (1991a). Depression-related disturbances in mitogen-induced lymphocyte responses, interleukin-1β, and soluble inter-leukin-2-receptor production. Acta Psychiatrica Scandinavica, 84, 379–386.PubMedCrossRefGoogle Scholar
  79. Maes, M., Bosmans, E., Suy, E., Vandervorst, C., DeJonckheere, C., & Raus., J. (1991b). Antiphospholipid, anti-nuclear, Epstein-Barr, and cytomegalovirus antibodies, and soluble interleukin-2 receptors in depressive patients. Journal of Affective Disorders, 21, 133–140.PubMedCrossRefGoogle Scholar
  80. Maes, M., Vandewoude, M., Scharpé, S., De Clerck, L., Stevens, W., Lepoutre, L., & Schotte, C. (1991c). Anthropometric and biochemical assessment of the nutritional state in depression: evidence for lower visceral protein plasma levels in depression. Journal of Affective Disorders, 23, 25–33.PubMedCrossRefGoogle Scholar
  81. Maes, M., Lambrechts, J., Bosmans, E., Jacobs, J., Suy, E., Vandervorst, C., De Jonckheere, C., Minner, B., & Raus, J. (1992a). Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychological Medicine, 22, 45–53.PubMedGoogle Scholar
  82. Maes, M., Scharpé, S., Bosmans, E., Vandewoude, M., Suy, E., Uyttenbroek, W., Cooreman, W., Vandervorst, C., & Raus, J. (1992b). Disturbances in acute phase plasma proteins during melancholia: additional evidence for the presence of an inflammatory process during that illness. Progress in Neuropsychopharmacology and Biological Psychiatry, 16, 501–515.CrossRefGoogle Scholar
  83. Maes, M., Scharpé, S., Van Grootel, L., Uyttenbroeck, W., Cooreman, W., Cosyns, P., & Suy, E. (1992c). Higher α1-antitrypsin, haptoglobin, ceruloplasmin, and lower retinol binding protein plasma levels during depression: further evidence for the existence of an inflammatory response during that illness. Journal of Affective Disorders, 24, 183–192.PubMedCrossRefGoogle Scholar
  84. Maes, M., Bosmans, E., Meltzer, H. Y, Scharpe, S., & Suy, E. (1993a). Interleukin-1β: A putative mediator of HPA-axis hyperactivity in major depression? American Journal of Psychiatry, 150, 1189–1193.PubMedGoogle Scholar
  85. Maes, M., Meltzer, H. Y, Scharpé, S., Uyttenbroeck, W., Cooremans, W., & Suy, E. (1993b). Psychomotor retardation, anorexia, weight loss, sleep disturbances, and loss of energy: psychopathological correlates of hyperhaptoglobinemia during major depression. Psychiatry Research, 47, 229–241.PubMedCrossRefGoogle Scholar
  86. Maes, M., Scharpé, S., Meltzer, H. Y, Bosmans, E., Suy, E., Minner, B., Calabrese, J., Uyttenbroeck, W., Vandervorst, C., Raus, J., & Cosyns, P. (1993c). Relationships between interleukin-6 activity, acute phase proteins, and HPA-axis function in severe depression. Psychiatry Research, 49, 11–27.PubMedCrossRefGoogle Scholar
  87. Maes, M., Scharpé, S., Meltzer, H. Y, & Cosyns, P. (1993d). Relationships between increased haptoglobin plasma levels and activity of cell-mediated immunity. Biological Psychiatry, 34, 690–701.PubMedCrossRefGoogle Scholar
  88. Maes, M., Delanghe, J., Meltzer, H. Y, D’Hondt, P., & Cosyns, P. (1994a). Lower degree of esterification of serum cholesterol in depression: relevance for depression and suicide research. Acta Psychiatrica Scandinavica, 90, 252–258.PubMedCrossRefGoogle Scholar
  89. Maes, M., De Langhe, J., Scharpé, S., Meltzer, H. Y., Cosyns, P., Suy, E., & Bosmans, E. (1994b). Haptoglobin phenotypes and gene frequencies in unipolar major depression. American Journal of Psychiatry, 151, 112–116.PubMedGoogle Scholar
  90. Maes, M., Scharpe, S., Cosyns, P., & Meltzer, H. Y. (1994c). Relationships between basal hypothalamic-pituitary-thyroid axis activity and plasma haptoglobin levels in depression. Journal of Psychiatric Research, 28, 123–134.PubMedCrossRefGoogle Scholar
  91. Maes, M., Scharpé, S., D’Haese, W., De Broe, M., & Cosyns, P. (1994d). Hypozincaemia in depression. Journal of Affective Disorders, 31, 135–140.PubMedCrossRefGoogle Scholar
  92. Maes, M., Scharpe, S., Meltzer, H. Y., Okayli, G., D’Hondt, P., & Cosyns, P. (1994e). Increased neopterin and interferon gamma secretion and lower L-tryptophan levels in major depression: further evidence for immune activation in severe depression. Psychiatry Research, 54, 143–160.PubMedCrossRefGoogle Scholar
  93. Maes, M., Meltzer, H. Y., Bosmans, E., Bergmans, R., Vandoolaeghe, E., Ranjan, R., & Desnyder, R. (1995a). Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2, and transferrin receptor in major depression. Journal of Affective Disorders, 34, 301–309.PubMedCrossRefGoogle Scholar
  94. Maes, M., Scharpé, S., Neels, H., Wauters, A., Van Gastel, A., & Cosyns, P. (1995b). Total serum protein and serum protein fractions in major depression. Journal of Affective Disorders, 34, 61–69.PubMedCrossRefGoogle Scholar
  95. Maes, M., Smith, R., & Scharpe, S. (1995c). The monocyte-T lymphocyte hypothesis of major depression. Psychoneuroendocrinology, 20, 111–116.PubMedCrossRefGoogle Scholar
  96. Maes, M., Smith, R., Christophe, A., Cosyns, P., Desnyder, R., & Meltzer, H. Y. (1996a). Fatty acid composition in major depression: decreased ω3 fractions in cholesteryl esters and increased C20: 4ω6/C20: 5ω3 ratio in cholesteryl esters and phospholipids. Journal of Affective Disorders, 38, 35–46.PubMedCrossRefGoogle Scholar
  97. Maes, M., Van de Vyvere, J., Vandoolaeghe, E., Bril, T., Demedts, P. Wauters, A., & Neels, H. (1996b). Alterations in iron metabolism and the erythron in major, depression: further evidence for a chronic inflammatory process. Journal of Affective Disorders, 40, 23–33.PubMedCrossRefGoogle Scholar
  98. Maes, M., Bosmans, E., De Jongh, R., Kenis, G., Vandoolaeghe, E., & Neels, H. (1997a). Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine, 9, 853–858.PubMedCrossRefGoogle Scholar
  99. Maes, M., Delanghe, J., Ranjan, R., Meltzer, H. Y., Desnyder, R., Cooreman, W., & Scharpe, S. (1997b). The acute phase protein response in schizophrenia, mania, and major depression: effects of psychotropic drugs. Psychiatry Research, 66, 1–11.PubMedCrossRefGoogle Scholar
  100. Maes, M., Vandoolaeghe, E., Neels, H., Demedts, P., Wauters, A., & Desnyder, R. (1997c). Lower high density lipoprotein cholesterol in major depression and in depressed men with serious suicidal attempts: relationships to immune-inflammatory markers. Acta Psychiatrica Scandinavica, 95, 212–221.PubMedCrossRefGoogle Scholar
  101. Maes, M., Vandoolaeghe, E., Neels, H., Demedts, P., Wauters, A., Meltzer, H. Y, Altamura, C. & Desnyder, R. (1997d). Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biological Psychiatry, 42, 349–358.PubMedCrossRefGoogle Scholar
  102. Maes, M., Verkerk, R., Vandoolaeghe, E., Van Hunsel, F., Neels, H., Wauters, A., Demedts, P., & Scharpe, S. (1997e). Serotonin-immune interactions in major depression: lower serum tryptophan as a marker of an immune-inflammatory response. European Archives of General Psychiatry and Clinical Neuroscience, 247, 154–161.Google Scholar
  103. Maes, M., Song, C., Lin, A., Bonaccorso, S., Scharpe, S., Kenis, G., DeJongh, R., Bosmans, E., & Scharpe, S. (1998a). Negative immunoregulatory effects of antidepressants: increased production of interleukin-10 and suppressed production of interferon-gamma. Neuropsychopharmacology, accepted.Google Scholar
  104. Maes, M., Song, C., Lin, A., Gabriels, L., DeJongh, R., Van Gastel, A., Kenis, G., Bosmans, E., DeMeester, I., Benoyt, I., Neels, H., Demedts, P., Janea, A., Scharpe, S., & Smith, R. S. (1998b). The effects of psychological stress on humans: increased production of proinflammatory cytokines and a Th-1-like response in stress-induced anxiety. Cytokine, 10, 313–318.PubMedCrossRefGoogle Scholar
  105. Maes, M., VanBockstaele, D.. VanGastel, A., Van Hunsel, F., Neels, H., DeMeester, I., Scharpe, S., & Janca, A. (1998c). Influence of psychological stress on leukocyte subset distribution in normal Humans: evidence for interrelated immunosuppression and T cell activation. Neuropsychobiology, in press.Google Scholar
  106. Maes, M., Song, C., Lin, A., DeJongh, R., Kenis, G., Bosmans, E., DeMeester, I., Neels, H., & Scharpe, S. (1999). Immune and clinical correlates of psychological stress-induced production of interferon-γ and IL-10 in humans. In N. P. Plotnikoff (Ed.), Cytokines, Stress, and Immunity. Boca Raton: CRC-Press [In press].Google Scholar
  107. Maier, S. F & Watkins, L. R. (1995). Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Research, 695, 279–282.PubMedCrossRefGoogle Scholar
  108. Maier, S. F. & Watkins, L. R. (1998). Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychological Reviews, 105, 83–107.CrossRefGoogle Scholar
  109. Mekaouche, M., Givalois, L., Barbanel, G., Siaud, P., Maurel, D., Malaval, F., Bristow, A. F., Boissin, J., Assenmacher, I., & Ixart, G. (1994). Chronic restraint enhances interleukin-1-beta release in the basal state and after an endotoxin challenge, independently of adrenocorticotropin, and corticosterone release. Neuroimmunomodulation, 1, 292–299.PubMedCrossRefGoogle Scholar
  110. Meydani, S. N., Endres. S., Woods, M. M.. Goldin, B. R., Soo, C., Morrill-Laborde. A., Dinarello, C. A., & Gorbach, S. L. (1991). Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. Journal of Nutrition, 121, 547–555.PubMedGoogle Scholar
  111. Mikova, O., Stoyanova, V, & Tanchev, O. (1998). Acute phase proteins in affective disorders. Abstract PT09032 XXIst CINP Congress 1998 Glasgow. 1998.Google Scholar
  112. Miller, A. H. & Lackner, C. (1989). Tricyclic antidepressants and immunity. In H. Miller (Ed.), Depressive Disorders and Immunity (pp. 85–104). Washington, DC: American Psychiatric Press.Google Scholar
  113. Miller, A. H.. Spencer, R. L., Pearce, B. D., Pisell, T. L., Tanapat, P., Leung, J. J., Dhabhar, F. S., McEwen, B. S., & Biron, C. A. (1997). 1996 Curt P. Richter Award. Effects of viral infection on corticosterone secretion and glucocorticoid receptor binding in immune tissues. Psychoneuroendocrinology, 22, 455–474.CrossRefGoogle Scholar
  114. Minami, M., Kuraishi, Y., Yamaguchi, T., Nakai, S., Hirai, Y., & Satoh, M. (1991). Immobilization stress induces interleukin-1 beta mRNA in the rat hypothalamus. Neuroscience Letters, 123, 254–256.PubMedCrossRefGoogle Scholar
  115. Mittwoch-Jaffe, T., Shalit, F., Srendi, B., & Yehuda, S. (1995). Modification of cytokine secretion following mild emotional stimuli. Neuroreport, 27, 789–792.CrossRefGoogle Scholar
  116. Morgan, R. E., Palinkas, L. A., Barrett-Connor, E. L., & Wingard, D. L. (1993). Plasma cholesterol and depressive symptoms in older men. The Lancet, 341, 75–79.CrossRefGoogle Scholar
  117. Morimoto, A., Murakami, N., Nakamori, T., Sakata, Y., & Watanabe, T. (1989a). Brain regions involved in the development of acute phase responses accompanying fever in rabbits. Journal of Physiology, 416, 645–657.PubMedGoogle Scholar
  118. Morimoto, A., Sakata, Y., Watanabe, T., & Murakami, N. (1989b). Characteristics of fever and acute-phase responses induced in rabbits by IL-1 and TNF. American Journal of Physiology, 256, 35–41.Google Scholar
  119. Muller, N., Ackenheil, M., & Hofschuster, E. (1989). Altered T-cell number and reduced suppressor cell activity in patients with affective psychosis. In J. W. Hadden, K. Masek, & G. Nistico (Eds.), Interactions Among Central Nervous System, Neuroendocrine, and Immune Systems (pp. 385–394). Rome: Pythagora Press.Google Scholar
  120. Muller, N., Hofschuster, E., Ackenheil, M., Mempel, W., & Eckstein, R. (1993). Investigations of the cellular immunity during depression and the free interval: evidence for an immune activation in affective psychosis. Progress in Neuropsychopharmacology and Biological Psychiatry, 17, 713–730.CrossRefGoogle Scholar
  121. Mussalo-Rauhamaa, H., Konttinen, Y. T., Lehto, J., & Honkanen, V. (1988). Predictive clinical and laboratory parameters for serum zinc and copper in rheumatoid arthritis. Annals of the Rheumatic Diseases, 47, 816–819.PubMedGoogle Scholar
  122. Nassberger, L. & Traskman-Bendz, L. (1993). Increased soluble interleukin-2 receptor concentrations in suicide attempters. Acta Psychiatrica Scandinavica, 88, 48–52.PubMedCrossRefGoogle Scholar
  123. Navarra, P., Tsagarakis, S., Faria, M. S., Rees, L. H., Besser, G. M., & Grossman, A. B. (1991). Interleukins-1 and-6 stimulate the release of corticotropin-releasing hormone 41 from rat hypothalamus in vitro via the eicosanoid cyclooxygenase pathway. Endocrinology, 128, 37–44.PubMedCrossRefGoogle Scholar
  124. Neveu, P. J., Deleplanque, B., Puglisi-Allegra, S., D’Amato, F. R., & Cabib, S. (1994). Influence of early life events on immune reactivity in adult mice. Developmental Psychobiology, 27, 205–213.PubMedCrossRefGoogle Scholar
  125. Nguyen, K. T., Deak, T., Owens, S. M., Kohno, T., Fleshner, M., Watkins, L. R., & Maier, S. F. (1998). Exposure to acute stress induces brain interleukin-1 beta protein in the rat. Journal of Neuroscience, 18, 2239–2246.PubMedGoogle Scholar
  126. Nicoloff, J.T. & LoPresti, J. S. (1991). Nonthyroidal illness. In L. E. Braverman & R. D. Utiger (Eds.), The thyroid: A Functional and Clinical Text (pp. 357–367). New York: J.B. Lippincott Company.Google Scholar
  127. Nordlind, K., Sundstrom, E., & Bondesson, L. (1992). Inhibiting effects of serotonin antagonists on the proliferation of mercuric chloride stimulated human peripheral blood T lymphocytes. International Archives of Allergy and Immunology, 97, 105–108.PubMedGoogle Scholar
  128. Peet, M., Murphy, B., Shay, J., & Horrobin, D. (1998). Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biological Psychiatry, 43, 315–319.PubMedCrossRefGoogle Scholar
  129. Perini, G. I., Zara, M., Carraro, C., Tosin, C., Gava, F., Santucci, M. G., Valverde, S., & Defranchis, G. (1995). Psychoimmunoendocrine effects of panic disorder. Human Psychopharmacology, 10, 461–465.CrossRefGoogle Scholar
  130. Persoons, J. H., Schornagel, K., Breve, J., Berkenbosch, F., & Kraal, G. (1995). Acute stress affects cytokines and nitric oxide production by alveolar macrophages differently. American Journal of Respiratory and Critical Care Medicine, 152, 619–624.PubMedGoogle Scholar
  131. Ramamoorthy, S., Ramamoorthy, J. D., Prasad, P. D., Bhat, G. K., Mahesh, V. B., Leibach, F. H., & Ganapathy, V. (1995). Regulation of the human serotonin transporter by interleukin-1 beta. Biochememical and Biophysical Research Communications, 216, 560–567.CrossRefGoogle Scholar
  132. Russo, C., Olivieri, O., Girelli, D., Guarini, P., Pasquallini, R., Azzini, M., & Corrocher, R. (1997). Increased membrane ratios of metabolite to precursor fatty acid in essential hypertension. Hypertension, 29, 1058–1063.PubMedGoogle Scholar
  133. Sakic, B., Szechtman, H., Braciak, T., Richards, C., Gauldie, J., & Denburg, J. A. (1997). Reduced preference for sucrose in autoimmune mice: a possible role of interleukin-6. Brain Research Bulletin, 44, 155–165.PubMedCrossRefGoogle Scholar
  134. Sapolsky, R., Rivier, C., & Yamamoto, G. (1987). Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science, 238, 522–524, 1987.PubMedCrossRefGoogle Scholar
  135. Seidel, A., Arolt, V., Hunstiger, M., Rink, L., Behnisch, A., & Kirchner, H. (1995). Cytokine production and serum proteins in depression. Scandinavian Journal of Immunology, 41, 534–538.PubMedCrossRefGoogle Scholar
  136. Seidel, A., Arolt, V., Hunstiger, M., Rink, L., Behnisch, A., & Kirchner, H. (1996a). Major depressive disorder is associated with elevated monocyte counts. Acta Psychiatrica Scandinavica, 94, 198–204.PubMedCrossRefGoogle Scholar
  137. Seidel, A., Arolt, V., Hunstiger, M., Rink, L., Behnisch, A., & Kirchner, H. (1996b). Increased CD56+ natural killer cells and related cytokines in major depression. Clinical Immunology and Immunopathology, 78, 83–85.PubMedCrossRefGoogle Scholar
  138. Shintani, F., Nakaki, T., Kanba, S., Kato, R., & Asai, M. (1995a). Role of interleukin-1 in stress responses. A putative neurotransmitter. Molecular Neurobiology, 10, 47–71.PubMedCrossRefGoogle Scholar
  139. Shintani, F., Nakaki, T., Kanba, S., Sato, K., Yagi, G., Shiozawa, M., Aiso, S., Kato, R., & Asai, M. (1995b). Involvement of interleukin-1 in immobilization stress-induced increase in plasma adrenocorticotropic hormone and in release of hypothalamic monoamines in the rat. Journal of Neuroscience, 15, 1961–1970.PubMedGoogle Scholar
  140. Shizuya, K., Komori, T., Fujiwara, R., Miyahara, S., Ohmori, M., & Nomura, J. (1997). The influence of restraint stress on the expression of mRNAs for IL-6 and the IL-6 receptor in the hypothalamus and midbrain of the rat. Life Sciences, 61, PL.Google Scholar
  141. Sinclair, A. J., Johnson, L., O’Dea, K., & Holman, R. T. (1994). Diets rich in lean beef increase arachidonic acid and long-chain ω3 polyunsaturated fatty acid levels in plasma phospholipids. Lipids, 29, 337–343.PubMedCrossRefGoogle Scholar
  142. Sluzewska, A., Nowakowska, E., Gryska, K., & Mackiewicz, A. (1994). Haptoglobin levels in a chronic mild stress model of depression in rats before and after treatment. European Neuropharmacology, P-1-18, 302.CrossRefGoogle Scholar
  143. Sluzewska, A., Rybakowski, J. K., Laciak, M., Mackiewicz, A., Sobieska, M., & Wiktorowiz, K. (1995). Inter-leukin-6 serum levels in depressed patients before and after treatment with fluoxetine. Annals of the New York Academy of Sciences, 762, 474–476.PubMedCrossRefGoogle Scholar
  144. Sluzewska, A., Rybakowski, J., Bosmans, E., Sobieska, M., Berghmans, R., Maes, M., & Wiktorowicz, K. (1996a). Indicators of immune activation in major depression. Psychiatry Research, 64, 161–167.PubMedCrossRefGoogle Scholar
  145. Sluzewska, A., Rybakowski, J. K., Sobieska, M., & Wiktorowicz, K. (1996b). Concentration and microheterogeneity glycophorms of alpha-1-acid glycoprotein in major depressive disorder. Journal of Affective Disorders, 39, 149–155.PubMedCrossRefGoogle Scholar
  146. Smejkal-Jagar, L. & Boranic, M. (1994). Serotonin, serotonergic agents, and their antagonists suppress humoral immune reaction in vitro. Research in Experimental Medicine, 194, 297–304.PubMedCrossRefGoogle Scholar
  147. Smith, R. S. (1991). The macrophage theory of depression. Medical Hypotheses, 35, 298–306.PubMedCrossRefGoogle Scholar
  148. Solomons, N. W. (1988). Zinc and copper. In M. E. Shils & V. R. Young (Eds.), Modern Nutrition in Health and Disease (pp. 238–262). Philadelphia: Lea & Febiger.Google Scholar
  149. Song, C. & Leonard, B. E. (1994). An acute phase protein response in the olfactory bulbectomized rat: effect of sertraline treatment. Medical Science Research, 22, 313–314.Google Scholar
  150. Song, C., Dinan, T., & Leonard, B. E. (1994). Changes in immunoglobulin, complement, and acute phase protein levels in the depressed patients and normal controls. Journal of Affective Disorders, 30, 283–288.PubMedCrossRefGoogle Scholar
  151. Song, C., Lin, A., Bonaccorso, S., Heide, C., Verkerk, R., Kenis, G., Bosmans, E., Scharpe, S., Cosyns, P., DeJong, R., & Maes, M. (1998). The inflammatory response system and the availability of tryptophan to the brain of patients with major depression and sleep disorders. Journal of Affective Disorders, 49, 211–219.PubMedCrossRefGoogle Scholar
  152. Soyland, E., Lea, T., Sandstad, B., & Drevon, A. (1994). Dietary supplementation with very long-chain n-3 fatty acids in man decreases expression of the interleukin-2 receptor (CD25) on mitogen-stimulated lymphocytes from patients with inflammatory skin diseases. European Journal of Clinical investigation, 24 236–242.PubMedGoogle Scholar
  153. Spath-Schwalbe, E., Hansen, K., Schmidt, F., Schrezenmeier, H., Marshall, L., Burger, K., Fehm, H. L., & Born, J. (1998). Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. Journal of Clinical Endocrinology and Metabolism. 83, 1573–1579.PubMedCrossRefGoogle Scholar
  154. Srinivas, U., Braconier, J. H., Jeppsson, B., Abdulla, M., Akesson, B., & Ockerman, P.A. (1988). Trace element alterations in infectious diseases. Scandinavian Journal of Clinical and Laboratory Investigation, 48, 495–500.PubMedGoogle Scholar
  155. Suzuki, E., Shintani, F., Kanba, S., Asai, M., & Nakaki, T. (1996). Induction of interleukin-1 and interleukin-1 receptor antagonist mRNA by chronic treatment with various psychotropics in widespread area of rat brain. Neuroscience Letters, 215, 201–4.PubMedCrossRefGoogle Scholar
  156. Swartz, C. M. (1990). Albumin decrement in depression and cholesterol decrement in mania. Journal of Affective Disorders, 19, 173–176.PubMedCrossRefGoogle Scholar
  157. Takaki, A., Huang, Q. H., Somogyvari-Vigh, A., & Arimura, A. (1994). Immobilization stress may increase plasma interleukin-6 via central and peripheral catecholamines. Neuroimmunomodulation, 1, 335–342.PubMedCrossRefGoogle Scholar
  158. Tilders, F. J. & Schmidt, E. D. (1998). Interleukin-1-induced plasticity of hypothalamic CRH neurons and long-term stress hyperresponsiveness. Annals of the New York Academy of Sciences, 840, 65–73.PubMedCrossRefGoogle Scholar
  159. Valentine, A. D., Meyers, C. A., Kling, M. A., Richelson, E., & Hauser, P. (1998). Mood and cognitive side effects of interferon-alpha therapy. Seminars in Oncology, 25(1 Suppl 1), 39–47.PubMedGoogle Scholar
  160. Van Dam, A. M., Malinowsky, D., Lenczowski, M. J., Bartfai, T., & Tilders, F. J. (1998). Interleukin 1 (IL-1) type I receptors mediate activation of rat hypothalamus-pituitary-adrenal axis and interleukin 6 production as shown by receptor type selective deletion mutants of IL-1beta. Cytokine, 70, 413–17.Google Scholar
  161. Vandoolaeghe, E., DeVos, N., DeSchouwer, P., Neels, H., & Maes, M. (1999). Lower number of red blood cells, hematocrit, and hemoglobin in major depression: effects of antidepressants. Human Psychopharmacology, accepted.Google Scholar
  162. Van Hunsel, F., Wauters, A., Vandoolaeghe, E., Neels, H., Demedts, P., & Maes, M. (1996). Lower total serum protein, albumin, and beta-and gamma-globulin in major and treatment-resistant depression: effects of antidepressant treatments. Psychiatry Research, 65, 159–169.PubMedCrossRefGoogle Scholar
  163. Van Miert, A. S., Van Duin, C. T., & Wensing, T. (1990). Fever and changes in plasma zinc and iron concentrations in the goat. The effects of interferon inducers and recombinant IFN-alpha 2a. Journal of Comparative Pathology, 103, 289–300.PubMedGoogle Scholar
  164. Wartofsky, L. & Burman, K. D. (1982). Alterations in thyroid function in patients with systemic illnesses: The “euthyroid sick syndrome”. Endocrinology, 3, 164–217.CrossRefGoogle Scholar
  165. Washburn, T. C., Medearis, J., & Childs, B. (1965). Sex differences in susceptibility to infections. Pediatrics, 35, 57–64.PubMedGoogle Scholar
  166. Wehmann, R. E., Gregerman, R. I., Burns, W. H., Saral, R., & Santos, G. W. (1985). Suppression of thyrotropin in the low-thyroxine state of severe nonthyroidal illness. The New England Journal of Medicine, 312, 546–552.PubMedCrossRefGoogle Scholar
  167. Weinberg, S. B., Schulteis, G., Fernando, A. G., Bakhit, C., & Martinez, J. L. (1988). Decreased locomotor activity produced by repeated, but not single, administration of murine-recombinant interferon-gamma in mice. Life Sciences, 42, 1085–1090.CrossRefGoogle Scholar
  168. Weiss, G., Fuchs, D., Hausen, A., Reibnegger, G., Werner, E. R., Werner-Felmayer, G., & Wachter, H. (1992). Iron modulates interferon-gamma effects in the human myelomonocytic cell line THP-1. Experimental Hematology, 20, 605–610.PubMedGoogle Scholar
  169. Xia, Z., DePierre, J. W, & Nassberger, L. (1996). Tricyclic antidepressants inhibit IL-6, IL-1β, and TNF-α release in human blood monocytes and IL-2 and interferon-γ in T cells. Immunopharmacology, 34, 27–37.PubMedCrossRefGoogle Scholar
  170. Yirmiya, R. (1996). Endotoxin produces a depressive-like episode in rats. Brain Research, 711, 163–174.PubMedCrossRefGoogle Scholar
  171. Yirmiya, R. (1997). Behavioral and psychological effects of immune activation: implications for depression due to a general medical condition. Current Opinion in Psychiatry, 10, 470–476.CrossRefGoogle Scholar
  172. Young, M. R. & Matthews, J. P. (1995). Serotonin regulation of T cell subpopulations and of macrophage accessory function. Immunology, 84, 148–152.PubMedGoogle Scholar
  173. Zhou, D., Kusnecov, A. W., Shurin, M. R., DePaoli, M., & Rabin, B. S. (1993). Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic-pituitary-adrenal axis. Endocrinology, 133, 2523–2530.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  1. 1.Clinical Research Center for Mental Health (CRC-MH) AntwerpBelgium
  2. 2.Istituto FatebenefratelliIRCCSBresciaItaly
  3. 3.Department of PsychiatryVanderbilt UniversityNashville

Personalised recommendations