Is There Evidence for an Effect of Antidepressant Drugs on Immune Function?

  • Pierre J. Neveu
  • Nathalie Castanon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 461)


Depression is a complex disease which is likely to involve several pathophysiological pathways. There is clear evidence that depression is associated with neurochemical and neuroendocrine alterations. Reduced activity of the serotoninergic (5-HT) and noradrenergic (NA) central systems are observed in a majority of patients with major depression (Garver & Davis, 1979). Depressed patients usually also exhibit an alteration of the hypothalamus-pituitary-adrenal (HPA) axis activity characterized by an hyperproduction of corticotropin-releasing hormone (CRH), which stimulates adrenocorticotropic hormone (ACTH) and cortisol release (Holsboer, Bardeleben, Gerken, Stalla, & Muller, 1984). Therefore, the biochemical activity of most antidepressants, including selective 5-HT reuptake inhibitors, monoamine oxidase inhibitors, and tricyclic antidepressants, has been assessed on the basis of their ability to reverse the alterations of monoamine and/or HPA axis activities (Hollister, 1986). However, the metabolic activity of these drugs is not necessarily related directly to their clinical efficacy (Barden, Reul, & Holsboer, 1995; Blier & de Montigny, 1994). Despite repeated attempts, the neuro-hormonal abnormalities observed in depression have never been shown to predict therapeutic response, nor can they account for the symptomatic profile of the patients. Furthermore, depletion of 5-HT or NA in healthy individuals does not induce clinically significant depressive symptomatology (Young, Smith, Pihl, & Erwin, 1985). In addition, there are also some atypical antidepressants with known experimental and clinical therapeutic effects, but devoid of the classic antidepressant actions on central monoamine activity (Guelfi, 1992; Van Riezen & Leonard, 1990).


Major Depression Antidepressant Drug Natural Killer Cell Activity Natural Killer Activity Immune Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, J., Helderman, J. H., Schlesser, M. A., & Rush, A. J. (1985). A controlled study of cellular immune function in affective disorders before and during somatic therapy. Psychiatry Research, 15, 185–193.PubMedCrossRefGoogle Scholar
  2. Altshuler, L. L., Plaeger-Marshall, S., Richeimer, S., Daniels, M., & Baxter, L. R. (1989). Lymphocyte function in major depression. Acta Psychiatrica Scandinavia, 80, 132–136.CrossRefGoogle Scholar
  3. Anderson, J. L. (1996). The immune system and major depression. Advanves in Neuroimmunology, 6, 119–129.CrossRefGoogle Scholar
  4. Arnold, F. J. & Meyerson, L. R. (1990). Olfactory bulbectomy alters alpha-1 acid glycoprotein levels in rat plasma. Brain Research Bulletin, 25, 259–262.PubMedCrossRefGoogle Scholar
  5. Arrigoni Martelli, E., Toth, E., Segre, A. D., & Corsico, N. (1967). Mechanism of inhibition of experimental inflammation by antidepressant drugs. European Journal of Pharmacology, 2, 229–233.CrossRefGoogle Scholar
  6. Audus, K. L. & Gordon, M. A. (1982). Characteristics of murine tricyclic antidepressant binding sites associated with murine lymphocytes from spleen. Journal of Immunopharmacology, 4, 1–12.PubMedCrossRefGoogle Scholar
  7. Audus, K. L. & Gordon, M. A. (1984). Effect of tricyclic antidepressant drugs on lymphocyte membrane structure. Journal of Immunopharmacology, 6, 105–132.PubMedCrossRefGoogle Scholar
  8. Barden, N., Reul, J. M. H. M., & Holsboer, F. (1995). Do antidepressants stabilize mood through actions on hypothalamic-pituitary-adrenocortical system? Trends in Neurosciences, 18, 6–11.PubMedCrossRefGoogle Scholar
  9. Bauer, J., Hohagen, F., Gimmel, E., Bruns, F., Lis, S., Krieger, S., Ambach, W., Guthmann, A., Grunze, H., Fritsch-Montero, R., Weissbach, A., Ganter, U., Frommberger, U., Riemann, D., & Berger, M. (1995). Induction of cytokine synthesis and fever suppresses REM sleep and improves mood in patients with major depression. Biological Psychiatry, 38, 611–621.PubMedCrossRefGoogle Scholar
  10. Bengtsson, B. O., Zhu, J., Thorell, L. H., Olsson, T., Link, H., & Walinder, J. (1992). Effects of zimeldine and its metabolites, clomipramine, imipramine, and maprotiline in experimental allergic neuritis in lewis rats. Journal of Immunology, 39, 109–112.Google Scholar
  11. Besedovsky, H. O. & Del Rey, A. (1996). Immune-neuro-endocrine interactions: facts and hypotheses. Endocrine Reviews, 17, 64–102.PubMedCrossRefGoogle Scholar
  12. Bianchi, M., Rossoni, G., Sacerdote, P., Panerai, A. E., & Berti, F. (1995). effects of clomipramine and fluoxetine on subcutaneous carrageenin-induced inflammation in the rat. Inflammation Research, 44, 466–469.PubMedCrossRefGoogle Scholar
  13. Bianchi, M., Sacerdote, P., & Panerai, A. E. (1994a). Fluoxetine reduces inflammatory edema in the rat: involvement of the pituitary-adrenal axis. European Journal of Pharmacology, 263, 81–84.PubMedCrossRefGoogle Scholar
  14. Bianchi, M., Sacerdote, P., & Panerai, A. E. (1994b). Clomipramine differently affects inflammatory edema and pain in the rat. Pharmacology Biochemestry and Behavior, 4, 1037–1040.CrossRefGoogle Scholar
  15. Blier, P. & de Montigny, C. (1994). Current advances and trends in the treatment of depression. Trends in Pharmacological Sciences, 15, 220–226.PubMedCrossRefGoogle Scholar
  16. Charles, G., Machowski, R., Brohee, D., Wilmotte, J., & Kennes, B. (1992). Lymphocyte subsets in major depressive patients. Influence of anxiety and corticoadrenal overdrive. Neuropsychobiology, 25, 94–98.PubMedGoogle Scholar
  17. Connor, T. J. & Leonard, B. E. (1998). Depression, stress, and immunological activation: the role of cytokines in depressive disorders. Life Sciences, 62, 583–606.PubMedCrossRefGoogle Scholar
  18. Cosyns, P., Maes, M., Vandewoude, M., Stevens, W. J., De Clerck, L. S., & Schotte, C. (1989). Impaired mitogen-induced lymphocyte responses and the hypothalamic-pituitary-adrenal axis in depressive disorders. Journal of Affective Disorders, 16, 41–48.PubMedCrossRefGoogle Scholar
  19. Darko, D. F., Lucas, A. H., Gillin, J. C, Risch, S. C., Golshan, S., Hamburger, R. N., Silverman, M. B., & Janowsky, D. S. (1988). Cellular immunity and the hypothalamic-pituitary axis in major affective disorder: a preliminary study. Psychiatry Research, 25, 1–9.PubMedCrossRefGoogle Scholar
  20. Deleplanque, B. & Neveu, P. J. (1995). Immunological effects of neuropsychotropic substances. In M. Guenounou (Ed.). Forum on immunomodulators (pp. 287–302). Paris: John Libbey Eurotext.Google Scholar
  21. Delrue, C, Deleplanque, B., Rouge-Pont, F., Vitiello, S., & Neveu, P. J. (1994), Brain monoaminergic, neuroendocrine, and immune responses to an immune challenge in relation to brain and behavioral lateralization. Brain Behavior and Immunity, 8, 137–152.CrossRefGoogle Scholar
  22. Descotes, J., Tedone, R., & Evreux, J. C. (1985). Different effects of psychotropic drugs on delayed hypersensitivity responses in mice. Journal of Neuroimmunology, 9, 81–85.PubMedCrossRefGoogle Scholar
  23. Dunn, A. J. (1992). Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. Journal of Pharmacology and Experimental Therapeutics, 261, 964–969.PubMedGoogle Scholar
  24. Eisen, J. N., Irwin, J., Quay, J., & Livnat, S. (1989). The effect of antidepressants on immune function in mice. Bioliogical Psychiatry, 26, 805–817.CrossRefGoogle Scholar
  25. Frommberger, U. H., Bauer, J., Haselbauer, P., Fräulin, A., Riemann, D., & Berger, M. (1997). Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. European Archives of Psychiatry and Clinical Neuroscience, 247, 228–233.PubMedGoogle Scholar
  26. Garver, D. L. & Davis, J. M. (1979). Biogenic amine hypothesis of affective disorders. Life Sciences, 24, 283–394.CrossRefGoogle Scholar
  27. Goldman, L. S. (1994). Successful treatment of interferon alfa-induced mood disorder with nortriptyline. Psychosomatics, 35, 412–413.PubMedGoogle Scholar
  28. Guelfi, J. D. (1992). Efficay of tianeptine in comparative trials versus reference antidepressants. An overview. British Journal of Psychiatry, 160, 72–75.Google Scholar
  29. Hickie, I. (1990). Is there immune dysfunction in depressive disorders? Psychololical Medecine, 20, 755–761.CrossRefGoogle Scholar
  30. Hollister, L. E. (1986). Current antidepressants. Annual Review of Pharmacology and Toxicology, 26, 23–37.PubMedCrossRefGoogle Scholar
  31. Holsboer, F., Bardeleben, U. von, Gerken, A., Stalla, G. K., & Muller, O. A. (1984). Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression. New England Journal of Medecine, 311, 1127–1132.Google Scholar
  32. Irwin, M. R., Daniels, M., Bloom, E., Smith, T. L., & Weiner, H. (1987). Life events, depressive symptoms, and immune function. American Journal of Psychiatry, 144, 431–441.Google Scholar
  33. Irwin, M., Patterson, T., Smith, T. L., Caldwell, C., Brown, S. A., Gillin, J. C, & Grant, I. (1990). Reduction of immune function in life stress and depression. Biological Psychiatry, 27, 22–30.PubMedCrossRefGoogle Scholar
  34. Janscar, S. & Leonard, B. E. (1983). The olfactory bulbectomized rat as a model of depression. In: Frontiers in Neuropsychiatric ressearch (E. Usdin, M. Goldstein, A. J. Friedhoff, A. Geogatas, Eds.) pp 357–372, MacMillan, New-YorkGoogle Scholar
  35. Jeanningros, R., Mazzola, P., Azorin, J. M., Samuelian-Massa, C., & Tissot, R. (1991). B-adrenoreceptor density of intact mononuclar leukocytes in subgroups of depressive disorders. Biological Psychiatry, 29, 789–798.PubMedCrossRefGoogle Scholar
  36. Joyce, P. R., Hawes, C. R., Mulder, R.T., Sellman, J. D., Wilson, D. A., & Boswell, D. R. (1992). Elevated levels of acute phase plasma proteins in major depression. Biological Psychiatry, 32, 1035–1041.PubMedCrossRefGoogle Scholar
  37. Katon, W. & Sullivan, M. D. (1990). Depression and chronic medical illness. Journal of Clinical Psychiatry, 57, 3–11.Google Scholar
  38. Kent, S., Bluthé, R. M., Kelley, K. W., & Dantzer, R. (1992). Sickness behavior as a new target for drug development. Trends in Pharmacological Sciences, 13, 24–28.PubMedCrossRefGoogle Scholar
  39. Kronfol, Z. & House, J. D. (1985). Depression, hypothalamic-pituitary-adrenocortical activity, and lymphocyte function. Psychopharmacology Bulletin, 21, 476–478.PubMedGoogle Scholar
  40. Kronfol, Z., Silva, J., Greden, J., Dembinski, S., Gardner, R., & Carroll, B. J. (1983). Lymphocyte function in depressive illness. Life Sciences, 33, 241–247.PubMedCrossRefGoogle Scholar
  41. Krulik, R., Sliva, D., Sikora, J., Farska, I., & Fuksova, K. (1988). Tricyclic antidepressant binding to lymphocyte membranes and changes during depression. European Journal of Pharmacology, 149, 357–361.PubMedCrossRefGoogle Scholar
  42. Kubera, M., Symbirtsev, A., Basta-Kaim, A., Borycz, J., Roman, A., Papp, M., & Claesson, M. (1996). Effect of chronic treatment with imipramine on interleukin 1 and interleukin 2 production by splenocytes obtained from rats subjected to a chronic mild stress model of depression. Polish Journal of Pharmacology, 48, 503–506.PubMedGoogle Scholar
  43. Landmann, R., Schaub, B., Link, S., & Wacker, H. R. (1997). Unaltered monocyte function in patients with major depression before and after three months of antidepressive therapy. Biological Psychiatry, 41, 675–681.PubMedCrossRefGoogle Scholar
  44. Layé, S., Parnet, P., Goujon, E., & Dantzer, R. (1994). Peripheral administration of lipopolisaccharide induces the expression of cytokine transcripts in the brain and pituitary in mice. Molecular Brain Research, 27, 157–162.PubMedCrossRefGoogle Scholar
  45. Levenson, J. L. & Fallon, H. J. (1993). Fluoxetine treatment of depression caused by interferon-α. American Journal of Gastroenterology, 88, 760–761.PubMedGoogle Scholar
  46. Linthorst, A. C. E., Flachskamm, G, Holsboer, F., & Reul, J. M. H. M. (1995). Intraperitoneal administration of bacterial endotoxin enhances noradrenergic neurotransmission in the rat preoptic area: relationship with body temperature and hypothalamic-pituitary-adrenocortical axis activity. European Journal of Neuroscience, 7, 2418–2430.PubMedCrossRefGoogle Scholar
  47. Maes, M., Bosmans, E., Suy, E., Vandervorst, C., Dejonckheere, C., Minner, B., & Raus, J. (1991). Depression-related disturbances in mitogen-induced lymphocyte responses, interleukin-lβ, and soluble interleukin-2-receptor production. Acta Psychiatrica Scandinavia, 84, 379–386.CrossRefGoogle Scholar
  48. Maes, M. (1995). Evidence for an immune response in major depression: a review and hypothesis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 19, 11–38.CrossRefGoogle Scholar
  49. Maes, M., Bosnians, E., Meltzer, H. Y., Scharpé, S., & Suy, E. (1993a). Interleukin-lβ: a putative mediator of HPA axis hyperactivity in major depression? American. Journal of Psychiatry, 150, 1189–1193.PubMedGoogle Scholar
  50. Maes, M., Bosmans, E., Suy, E., Minner, B., & Raus, J. (1989). Impaired lymphocyte stimulation by mitogens in severely depressed patients. A complex interface with HPA-axis hyperfonction, noradrenergic activity, and the ageing process. British. Journal of Psychiatry, 155, 793–798.PubMedGoogle Scholar
  51. Maes, M., Lambrechts, J., Bosmans, E., Jacobs, J., Suy, E., Vandervorst, C., De Jonckheere, C., Minner, B., & Raus, J. (1992). Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychological Medecine, 22, 45–53.Google Scholar
  52. Maes, M., Scharpé, S., Meltzer, H. Y., Bosmans, E., Suy, E., Calabrese, J., & Cosyns, P. (1993b). Relationship between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Research, 49, 11–27.PubMedCrossRefGoogle Scholar
  53. Maes, M., Smith, R., & Scharpe, S. (1995). The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology, 20, 111–116.PubMedCrossRefGoogle Scholar
  54. Maier, S. F. & Watkins, L. R. (1995). Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Research, 695, 279–282.PubMedCrossRefGoogle Scholar
  55. McAdams, C. & Leonard, B. E. (1993). Neutrophil and monocyte phagocytosis in depressed patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 17, 971–984.CrossRefGoogle Scholar
  56. McDonald, E. M., Mann, A. H., & Thomas, H. C. (1987). Interferon as mediatiors of psychiatric morbidity. Lancet, 2, 1175–1178.PubMedCrossRefGoogle Scholar
  57. Meijer, A., Zakay-Rones, Z., & Morag, A. (1988). Post influenza psychiatric disorder in adolescents. Acta Psychiatica Scandinavia, 78, 176–181.CrossRefGoogle Scholar
  58. Merendino, R. A., Mancuso, G., Tomasello, F., Gazzara, D., Cusumano, V., Chiliemi, S., Spadaro, P., & Mesiti, M. (1994). Effects of lithium carbonate on cytokine production in patients affected by breast cancer. Journal of Biological Regulators and Homeostatic Agents, 8, 88–91.PubMedGoogle Scholar
  59. Miller, A. H., Asnis, G. M., Lackner, C., Halbreich, U., & Norin, A. J. (1991). Depression, natural killer cell activity, and cortisol secretion. Biological Psychiatry, 29, 878–886.PubMedCrossRefGoogle Scholar
  60. Mitchinson, M. & Ball, R. (1987). Macrophages and atherogenesis. Lancet, 1, 146–148.CrossRefGoogle Scholar
  61. Mohr, D. C., Goodkin, D. E., Likosky, W., Gatto, N., Baumann, K. A., & Rudick, R. A. (1997). Treatment of depression improves adherence to interferon beta-1β therapy for multiple sclerosis. Archives of Neurology, 54, 531–533.PubMedGoogle Scholar
  62. Muller, N. (1995). Psychoneuroimmunology: implications for the drug treatment of psychiatric disorders. Central Nervous System Drugs, 4, 125–140.Google Scholar
  63. Munck, A., Guyre, P. M., & Meltzer, M. S. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 1, 25–44.Google Scholar
  64. Nerozzi, D., Santoni, A., Bersani, G., Magnani, A., Bressan, A., Pasini, A., Antonozzi, I., & Frajese, G. (1989). Reduced natural killer cell activity in major depression: neuroendocrine implications. Psychoneuroendocrinology, 14, 295–301.PubMedCrossRefGoogle Scholar
  65. Perini, G. I., Zara, M., Carraro, C., Tosin, C., Gava, F., Santucci, M. G., Valverde, S., & De Franchis, G. (1995). Psychoimmunoendocrine aspects of panic disorder. Human Psychopharmacology, 10, 461–465.CrossRefGoogle Scholar
  66. Rabkin, J. G. & Harrison, W. M. (1990). Effect of imipramine on depression and immune status in a sample of men with HIV infection. American Journal of Psychiatry, 147, 495–497.PubMedGoogle Scholar
  67. Sacerdote, P., Bianchi, M., & Panerai, A. E. (1997). In vivo and in vitro clomipramine treatment decreases the migration of macrophages in the rat. European Journal of Pharmacology, 319, 287–290.PubMedCrossRefGoogle Scholar
  68. Sacerdote, P., Bianchi, M., & Panerai, A. E. (1994). Chlorimipramine and nortriptyline but not fluoxetine and fluvoxamine inhibit human polymorphonuclear cell chemotaxis in vitro. General Pharmacol, 25, 409–412.CrossRefGoogle Scholar
  69. Schleifer, S. J., Keller, S. E., Bond, R. N., Cohen, J., & Stein, M. (1989). Major depressive disorder and immunity: role of age, sex, severity, and hospitalisation. Archives of General Psychiatry, 46, 81–87.PubMedGoogle Scholar
  70. Schleifer, S. J., Keller, S. E., Bartlett, J. A., Eckholdt, H. M., & Delaney, B. R. (1996). Immunity in young adults with major depressive disorder. American Journal of Psychiatry, 153, 477–482.PubMedGoogle Scholar
  71. Seidel, A., Arolt, V., Hunstiger, M., Rink, L., Behnisch, A., & Kirchner, H. (1996). Major depressive disorder is associated withe elevated monocyte counts. Acta Psychiatrica Scandinavia, 94, 198–204.CrossRefGoogle Scholar
  72. Seidel, A., Arolt, V., Hunstiger, M., Rink, L., Behnisch, A., & Kirchner, H. (1995). Cytokine production and serum proteins in depression. Scandinavian Journal of Immunology, 41, 534–538.PubMedCrossRefGoogle Scholar
  73. Shintani, F, Nakaki, T, Kanba, S., Sato, K., Yagi, G., Shiozawa, M., Aiso, S., Kato, R., & Asai, M. (1995). Involvement of interleukin-1 in immobilization stress-induced increase in plasma adrenocorticotropic hormone and in release of hypothalamic monoamines in the rat. Journal of Neuroscience, 15, 1961–1970.PubMedGoogle Scholar
  74. Sluzewska, A., Rybakowski, J. K., Laciak, M., Mackiewicz, A., Sobieska, M., & Wiktorowicz, K. (1995a). Inter-leukin-6 serum levels in depressed patients before and after treatment with fluoxetine. Annals of the. New York Academy of Sciences, 762, 474–471.PubMedCrossRefGoogle Scholar
  75. Sluzewska, A., Rybakowski, J. K., Sobieska, M., Bosmans, E., Pollet, H., & Wiktorowicz, K. (1995b). Increased levels of alpha-1-acid glycoprotein and interleukin-6 in refractory depression. Depression, 3, 170–175.CrossRefGoogle Scholar
  76. Smith, R. S. (1991). The macrophage theory of depression. Medecine Hypotheses, 35, 298–306.CrossRefGoogle Scholar
  77. Sommer, N., Löschmann, P.-A., Northoff, G. H., Weiler, M., Steinbrecher, A., Steinbach, J. P., Lichtenfels, R., Meyerman, R., Riethmüller, A., Fontana, A., Dichgans, J., & Martin, R. (1995). The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nature Medecine, 1, 244–248.CrossRefGoogle Scholar
  78. Song, C. & Leonard, B. E. (1994). An acute phase protein response in the olfactory bulbectomized rat: effect of sertraline treatment. Medical Science Research, 22, 313–314.Google Scholar
  79. Stein, M., Miller, A. H., & Trestman, R. L. (1991). Depression, the immune system, and health and illness: findings in search of meaning. Archives of General Psychiatry, 48, 171–177.PubMedGoogle Scholar
  80. Sundar, S. K., Cierpial, M. A., Kilts, C., Ritchie, J. C., & Weiss, J. M. (1990). Brain IL-1 induced immunosup-pression occurs through activation of both pituitary-adrenal axis and sympathetic nervous system by corticotropin-releasing factor. Journal of Neuroscience, 10, 3701–3706.PubMedGoogle Scholar
  81. Suzuki, E., Shintani, F., Kanba, S., Asai, M., & Nakaki, T. (1996). Induction of interleukin-lβ and interleukin-1 receptor antagonist mRNA by chronic treatment with various psychotropics in widespread area of rat brain. Neuroscience Letters, 215, 201–204.PubMedCrossRefGoogle Scholar
  82. Targum, S. D., Marshall, L. E., Ficshman, P., & Martin, D. (1989). Lymphocyte subpopulations in depressed elderly women. Biological Psychiatry, 26, 581–589.PubMedCrossRefGoogle Scholar
  83. Udelman, D. L. & Udelman, H. D. (1985). A preliminary report on anti-depressant therapy and its effects on hope and immunity. Social Science and Medicine, 20, 1069–1072.PubMedCrossRefGoogle Scholar
  84. Ur, E., White, P. D., & Grossman, A. (1992). Hypothesis: cytokines may be activated to cause depressive illness and chronique fatigue syndrome. European Archives of Psychiatry and Clinical Neuroscience, 241, 317–322.PubMedCrossRefGoogle Scholar
  85. Van Riezen, H. & Leonard, B. E. (1990). Effects of psychotropic drugs on the behavior and neurochemistry of olfactory bulbectomized rats. Pharmacology and Therapeutics, 47, 21–34.PubMedCrossRefGoogle Scholar
  86. Weizman, R., Laor, N., Podliszewski, E., Notti, I., Djaldetti, M., & Bessler, H. (1994). Cytokine production in major depressed patiens before and after clomipramine treatment. Biololical Psychiatry, 35, 42–47.CrossRefGoogle Scholar
  87. Xia, Z., De Pierre, J. W, & Nassberger, L. (1996). Tricyclic antidepressants inhibit IL-6, IL-1 beta, and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology, 34, 27–37.PubMedCrossRefGoogle Scholar
  88. Xiao, L. & Eneroth, P. (1995). Tricyclic antidepressants inhibit human natural killer cells. Toxicology and Applied Pharmacology, 137, 157–162.CrossRefGoogle Scholar
  89. Yirmiya, R. (1996). Endotoxin produces a depresive-like episode in rats. Brain Research, 711, 163–174.PubMedCrossRefGoogle Scholar
  90. Young, S. N., Smith, S. E., Pihl, R. O., & Ervin, F. R. (1985). Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology, 87, 173–177.PubMedCrossRefGoogle Scholar
  91. Zalcman, S., Green-Johnson, J. M., Murray, L., Nance, D. M., Dyck, D., Anisman, H., & Greenberg, A. H. (1994). Cytokine-specific central monoamine alterations induced by interleukin-1,-2, and-6. Brain Research, 643, 40–49.PubMedCrossRefGoogle Scholar
  92. Zhu, J., Bengtsson, B. O., Mix, E., Thorell, L. H., Olsson, T., & Link, H. (1994). Effect of monoamine reup-take inhibiting antidepressants on major histocompatibility complex expression on macrophages in normal rats and rats with experimental allergic neuritis (EAN). Immunopharmacology, 27, 225–244.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Pierre J. Neveu
    • 1
  • Nathalie Castanon
    • 1
  1. 1.Neurobiologie IntégrativeINSERM U 394, Institut François Magendie rue Camille Saint-SaënsBordeauxFrance

Personalised recommendations