Skip to main content

Quantification And Prescription General Principles

  • Chapter

Abstract

The quantification and prescription of dialysis have received enormous attention in recent years. There has been increasing evidence that higher doses of dialysis are associated with better patient survival and superior clinical outcomes. Measurement of dialytic dose has therefore become almost routine in many centers. It has become apparent, however, that there are many methodological and practical problems associated with both quantification and prescription of both hemodialysis (HD) and peritoneal dialysis (PD). This chapter will review this important subject and related topics in detail

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson WJ, Hagge WW, Wagoner RD, Dinapoli RP, Rosevear JW: Effects of urea loading in patients with faradvanced renal failure. Mayo Clin Proc 47: 21, 1972

    PubMed  CAS  Google Scholar 

  2. Merril JP, Legrain M, Hoigne R: Observations on the role of urea in uremia. Ann Intern Med 14: 519, 1953

    Google Scholar 

  3. Bergstrom J: Uraemic toxins. This edition

    Google Scholar 

  4. Owen WF Jr, Lew NL, Liu Y, Lowrie EG, Lazarus JM: The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med 329: 1001, 1993

    PubMed  Google Scholar 

  5. Pedrini LA, Zereik S, Rasmy S: Causes, kinetics and clinical implications of post-hemodialysis urea rebound. Kidney Int 34: 817, 1988

    PubMed  CAS  Google Scholar 

  6. Ward RA, Shirlow MJ, Hayes JM, Chapman GV, Farrell PC: Protein catabolism during hemodialysis. Am J Clin Nutr 32: 2443, 1979

    PubMed  CAS  Google Scholar 

  7. Farrell PC, Hone PW: Dialysis-induced catabolism. Am J Clin Nutr 33: 1417, 1980

    PubMed  CAS  Google Scholar 

  8. Lim VS, Bier DM, Flanigan MJ, Sum-Ping ST: The effect of hemodialysis on protein metabolism: A leucine kinetic study. J Clin Invest 91: 2429, 1993

    PubMed  CAS  Google Scholar 

  9. Van Stone JC, Daugirdas JT: Physiologic Principles. in Handbook of Dialysis, 2nd Ed, edited by Daugirdas JT, Ing TS, Boston: Little, Brown and Company, 1994, p 13

    Google Scholar 

  10. Sherman RA: Recirculation revisited. Semin Dial 4: 221, 1991

    Google Scholar 

  11. Schneditz D, Kaufman AM, Polaschegg H, Levin NW, Daugirdas JT: Cardiopulmonary recirculation during hemodialysis. Kidney Int 42: 1450, 1992

    PubMed  CAS  Google Scholar 

  12. Shackman R, Chisholm GD, Holden AJ, Pigott RW: Urea distribution in the body after haemodialysis. Br Med J 34: 817, 1962

    Google Scholar 

  13. Schindhelm K, Farrell PC: Patient-hemodialyzer interactions. Trans Am Soc Artif Intern Organs 24: 357, 1978

    PubMed  CAS  Google Scholar 

  14. Frost TH, Kerr DNS: Kinetics of hemodialysis: A theoretical study of the removal of solutes in chronic renal failure compared to normal health. Kidney Int 12: 41, 1977

    PubMed  CAS  Google Scholar 

  15. Heineken FG, Evans MC, Keen ML, Gotch FA: Intercom-partmental fluid shifts in hemodialysis patients. Biotechnol Progr 3: 69, 1987

    Google Scholar 

  16. Schneditz D, VanStone JC, Daugirdas JT: A regional blood circulation alternative to in-series two-compartment urea kinetic modeling. ASAIO J 39: M573, 1993

    PubMed  CAS  Google Scholar 

  17. Schneditz D, Daugirdas JT: Formal analytical solution to a regional blood flow and diffusion-based urea kinetic model. ASAIO J 1994. In press

    Google Scholar 

  18. Depner TA, Cheer A, Vedantham R: Is two-compartment modeling required for high-flux hemodialysis? (Abstract) Am Soc Nephrol 1: 354, 1990

    Google Scholar 

  19. Cappello A, Grandi F, Lamberti C, Santoro A: Comparative evaluation of different methods to estimate urea distribution volume and generation rate. Int J Artif Organs 1994. In press

    Google Scholar 

  20. Bosticardo GM, Alloatti S: Classical urea kinetic model and direct dialysis quantification agreement. ASAIO J 41: 14798, 1995

    Google Scholar 

  21. Tattersall JE, Aldridge C, Greenwood RN, Farrington K. How good is the dialysate collection method for determination of V? (Abstract) Am Soc Nephrol 5: 530, 1994

    Google Scholar 

  22. Gotch FA: Kinetic modeling in hemodialysis. in Clinical Dialysis, 2nd Ed, edited by Nissenson AR, Fine RN, Gentile DE, Norwalk, Appleton & Lange, 1990, p 118

    Google Scholar 

  23. Tattersall JE, Greenwood RN, Farrington K: Intercom-partmental diffusion and cardiopulmonary recirculation in long and short dialyses. (Abstract) Am Soc Nephrol 1995

    Google Scholar 

  24. Spiegel DM, Paker PL, Babcock S, Contiguglia R, Klein M: Hemodialysis urea rebound: the effect of increasing dialysis efficiency. Am J Kidney Dis 25: 26, 1995

    PubMed  CAS  Google Scholar 

  25. Smye SW, Evans JHC, Will E, Brocklebank JT: Paediatric haemodialysis: estimation of treatment efficiency in the presence of urea rebound. Clin Phys Physiol Meas 13: 51, 1992

    PubMed  CAS  Google Scholar 

  26. Star RA, Hootkins R, Thompson JR, Poole T, Toto RD: Variability and stability of two pool urea mass transfer coefficient. Am Soc Nephrol 3: 395, 1992

    Google Scholar 

  27. Tsang HK, Leonard EF, LeFavour GS, Cortell S: Urea dynamics during and immediately after dialysis. ASAIO J 8: 251, 1985

    Google Scholar 

  28. Keshaviah P, Hanson G, Abraham P, Collins A: Erythropoietin and cell membrane permeability. (Abstract) Kidney Int 37: 304, 1990

    Google Scholar 

  29. Jost CMT, Agarwal R, Khair-El-Din K, Graybum PA, Victor RG, Henrich WL: Effects of cooler temperature dialysate on hemodynamic stability in ‘problem’ dialysis patients. Kidney Int 44: 606, 1993

    PubMed  CAS  Google Scholar 

  30. Kaufman AM, Morris AT, Glabman MB et al.: Effect of dialysate cooling on blood pressure and effective dialysate dose. (Abstract) Am Soc Nephrol 5: 317, 1994

    Google Scholar 

  31. Yu AW, Ing TS, Zabaneh RI, Daugirdas JT: Effect of cold dialysate temperature on urea kinetics during moderate efficiency dialysis. Kidney Int 48: 237, 1995

    PubMed  CAS  Google Scholar 

  32. Yu AW, Ing TS, Ejaz AA, Daugirdas JT: Effect of acetate dialysate on urea kinetics during moderate efficiency dialysis. (Abstract) Am Soc Nephrol 5. 533, 1994

    Google Scholar 

  33. Kjellstrand C, Kjellstrand P, Skroder R, Ceiderlof IO, Ericsson F, Jacobson S: Dialysis kinetics using pre-and post-concentrations of BUN are not accurate. Am Soc Nephrol 3: 375, 1992

    Google Scholar 

  34. Gotch FA, Sargent JA: A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int 28: 526, 1985

    PubMed  CAS  Google Scholar 

  35. Lowrie EG, Laird NM, Parker TF, Sargent JA: Effect of the hemodialysis prescription on patient morbidity. N Engl J Med 305: 1176, 1981

    Article  PubMed  CAS  Google Scholar 

  36. Sargent JA, Gotch FA: Mathematical modeling of dialysis therapy. Kidney Int 18: S2, 1980

    Google Scholar 

  37. Sargent JA: Control of dialysis by a single-pool urea model: the National Cooperative Dialysis Study. Kidney Int 23: S13, 1983

    Google Scholar 

  38. Daugirdas JT: Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. Am Soc Nephrol 4: 1205, 1993

    CAS  Google Scholar 

  39. Jindal KK, Manuel A, Goldstein MB: Percent reduction in blood urea concentration during hemodialysis (PRU). Trans Am Soc Artif Intern Organs 33: 286, 1987

    CAS  Google Scholar 

  40. Basile C, Casino F, Lopez T: Percent reduction in blood urea concentration during dialysis estimates Kt/V in a simple and accurate way. Am J Kidney Dis 15: 40, 1990

    PubMed  CAS  Google Scholar 

  41. Garred LJ, McCready W: A theory based, simple formula for Kt/V calculation from pre/post urea. Abstr Am Soc Artif Intern Organs 70, 1992

    Google Scholar 

  42. Collins AJ, Ma JZ, Umen A: Urea index (Kt/V) and other predictors of hemodialysis patient survival, Am J Kidney Dis 23: 272, 1994

    Google Scholar 

  43. Ahmad S, Cole JJ: Lower morbidity associated with higher Kt/V in stable hemodialysis patients. (Abstract) Am Soc Nephrol 1: 346, 1990

    Google Scholar 

  44. Loon NR, Pinevich AJ, Banic S, Anderson C: Improved adequacy of hemodialysis (Kt/V) does not improve nutritional status. (Abstract) Am Soc Nephrol 2: 336, 1991

    Google Scholar 

  45. Shen FH, Hsu KT: Lower mortality and morbidity associated with higher Kt/V in hemodialysis patients. (Abstract) Am Soc Nephrol 1: 377, 1990

    Google Scholar 

  46. Charra B, Calemard E, Ruffet M et al.: Survival as an index of adequacy of dialysis. Kidney Int 41: 1286, 1992

    PubMed  CAS  Google Scholar 

  47. Hakim RM, Breyer J, Ismail N, Schulman G: Effects of dose of dialysis on morbidity and mortality. Am J Kidney Dis 23: 661, 1994

    PubMed  CAS  Google Scholar 

  48. Parker TF, Husni L, Huang W, Lew N, Lowrie EG: Survival of hemodialysis patients in the Unites States is improved with a greater quantity of dialysis. Am J Kidney Dis 23: 670, 1994

    PubMed  Google Scholar 

  49. Maeda K: Preliminary Report, Japanese Dialysis Society Registry, 1991

    Google Scholar 

  50. Held PJ, Port FK: Relationship between Kt/V and mortality. Am Soc Nephrol 5: 37P, 1994

    Google Scholar 

  51. Lysaght MJ, Vonesh EF, Gotch F et al.: The influence of dialysis treatment modality on the decline of remaining renal function. Trans Am Soc Artif Intern Organs 37: 598, 1991

    CAS  Google Scholar 

  52. Pflederer BJ, Torrey C, Lau AH, Daugirdas JT: Postdialysis urea rebound after ‘long’ session length (3.5-4.5 hour) hemodialysis. (Abstract) Am Soc Nephrol 4: 377, 1993

    Google Scholar 

  53. Daugirdas JT, Schneditz D: Overestimation of hemodialysis dose (DKt/V) depends on dialysis efficiency (K/V) by regional blood flow but not by conventional 2-pool UKM. ASAIO J 41: 14719, 1995

    Article  Google Scholar 

  54. Daugirdas JT, Schneditz D: Effect of access and cardiopulmonary recirculation on the modeled urea distribution volume. Am J Kidney Dis 1996. In press

    Google Scholar 

  55. Depner TA: Prescribing Hemodialysis: A Guide to Urea Modeling, Dordrecht/Boston/London, Kluwer Academic Publishers, 1990

    Google Scholar 

  56. MMHD Study Group, Levin NW, Agodoa LY et al.: Comparisons of Smye algorithm with double pool model solution for estimating e(Kt/V). (Abstract) Am Soc Nephrol 5: 519, 1994

    Google Scholar 

  57. Pflederer BJ, Torrey C, Daugirdas JT: Use of the inlet Smye technique in patients with vascular access recirculation. Kidney Int 48: 832, 1995

    PubMed  CAS  Google Scholar 

  58. Twardowski Z: Effect of longterm increase in the frequency and/or prolongation of dialysis duration on certain clinical mainfestations and results of laboratory investigations in patients with chronic renal failure. Acta Med Pol 116: 31, 1975

    Google Scholar 

  59. Snyder D, Louis BM, Gorfien P, Mordujovich J: Clinical experience with longterm, brief, ‘daily’ haemodialysis. Proc Eur Dial Transplant Assoc, 11: 128, 1975

    PubMed  CAS  Google Scholar 

  60. Hombrouckx R, Bogaert AM, Leroy F et al.: Limitations of short dialysis are the indications for ultrashort daily auto dialysis. Trans Am Soc Artif Intern Organs 35: 503, 1989

    CAS  Google Scholar 

  61. Marichal JF, Brignon P, Faller B: Experience d’hémodialyse quotidienne ultracourte avec abord vasculaire raumatique. A propos de deux cas. Nephrologie 11: 135, 1990

    PubMed  CAS  Google Scholar 

  62. Buoncristiani U, Giombini L, Cozzari M, Carobi C, Quintaliani G, Brugnano R: Daily recycled bicarbonate dialysis with polyacrylonitrile. Trans Am Soc Artif Intern Organs 29: 669, 1983

    PubMed  CAS  Google Scholar 

  63. Harris CP, Townsend JJ: Dialysis disequilibrium syndrome. West J Med 151: 52, 1989

    PubMed  CAS  Google Scholar 

  64. Daugirdas JT: Acute hemodialysis prescription. in Handbook of Dialysis, 2nd Ed, edited by Daugirdas JT, Ing TS, Boston, Little, Brown and Company, 1994, p 78

    Google Scholar 

  65. Simpson K, Allison MEM: Dialysis and acute renal failure: Can mortality be improved? (Abstract) Proc Eur Dial Transplant Assoc 160, 1993

    Google Scholar 

  66. Malchesky PS, Ellis P, Nosse C, Magnusson M, Lankhorst B, Nakamoto S: Direct quantification of dialysis. Dial Transplant 12: 694, 1983

    Google Scholar 

  67. Buur T, Larsson R: Accuracy of hemodialysis urea kinetic modeling. Comparison of different models. Nephron 59: 358, 1991

    PubMed  CAS  Google Scholar 

  68. Keshaviah P, Ebben J, Luhring D, Emerson P, Collins A: Clinical evaluation of a new online monitor of dialysis adequacy. Am Soc Nephrol 3: 374, 1992

    Google Scholar 

  69. Garred LJ, DiGiuseppe B, Chand W, McCready W, Canaud B: Kt/V and protein catabolic rate determination from serial urea measurement in the dialysate effluent stream. Artif Organs 16: 248, 1992

    Article  PubMed  CAS  Google Scholar 

  70. Ing TS, Yu AW, Tiwari P et al.: Collection of a spent hemodialysate aliquot the composition of which reflects that of total spent dialysate. Am J Kidney Dis 1995. In press

    Google Scholar 

  71. von Albertini B, Garcia-Valdecasas J, Barlee V, Lew SQ, Bosch JP: Solute rebound in highly efficient dialysis: impact on quantification of therapy. (Abstract) Am Soc Nephrol 4: 393, 1993

    Google Scholar 

  72. Hume R, Weyers E: Relationship between total body water and surface area in normal and obese subjects. J Clin Pathol 24: 234, 1971

    PubMed  CAS  Google Scholar 

  73. Watson PE, Watson ID, Batt RD: Total body water volumes for adult males and females estimated from simple anthopometric measurements. Am J Clin Nutr 33: 27, 1980

    PubMed  CAS  Google Scholar 

  74. Daugirdas JT, Depner TE: A nomogram approach to hemodialysis urea modeling. Am J Kidney Dis 23: 33, 1994

    PubMed  CAS  Google Scholar 

  75. Daugirdas JT: Chronic hemodialysis prescription, in Handbook of Dialysis, 2nd Ed, edited by Daugirdas JT, Ing TS, Boston, Little, Brown and Company, 1994, p 92

    Google Scholar 

  76. Van Stone JC: Hemodialysis apparatus. in Handbook of Dialysis, 2nd Ed, edited by Daugirdas JT, Ing TS, Boston, Little, Brown & Company, 1994, p 32

    Google Scholar 

  77. Gotch F: Hemodialysis: Technical and kinetic considerations. in The Kidney, edited by Brenner B, Rector FC Jr, Philadelphia, WB Saunders Co, 1976, p 1972

    Google Scholar 

  78. Sargent J, Gotch F: Principles and biophysics of dialysis. in Replacement of Renal Function by Dialysis, 2nd Ed, edited by Drukker W, Parsons F, Maher J, The Hague, Martinus Nijhoff Publishers, 1985, p 53

    Google Scholar 

  79. Depner TA, Rizwan S, Stasi TA: Pressure effects on roller pump blood flow during hemodialysis. Trans Am Soc Artif Intern Organs 36: M456, 1990

    CAS  Google Scholar 

  80. Matzke GR, Rault R, Joy M, Freedv B: Can delivered dialysis Kt/V be accurately predicted from the dialysis prescription? (Abstract) Am Soc Nephrol 5: 522, 1994

    Google Scholar 

  81. Taylor AJ, Vadgama P: Analytical reviews in clinical biochemistry: the estimation of urea. Ann Clin Biochem 29: 245, 1992

    PubMed  CAS  Google Scholar 

  82. Daugirdas JT, Ing TS, Humayun HM et al.: Two-hour, high-surface-area hemodialysis: a feasibility study. Int J Artif Organs 4: 13, 1981

    PubMed  CAS  Google Scholar 

  83. Schiff M, Parker E, Carlson C et al.: Too little, too long: why do patients remain underdialyzed? (Abstract) Am Soc Nephrol 5: 527, 1994

    Google Scholar 

  84. Leypoldt JK, Kablitz C, Gregory MC, Senekjian HO, Cheung AK: Prescribing hemodialysis using a weekly urea mass balance model. Biochem Pharmacol 9: 271, 1991

    Article  CAS  Google Scholar 

  85. Giovannetti S, Maggiore Q: A low nitrogen diet with proteins of high biological value for severe chronic uremia. Lancet 1: 1000, 1964

    PubMed  CAS  Google Scholar 

  86. Lowrie EG, Lew NL: Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 5: 458, 1990

    Google Scholar 

  87. Borah MF, Schoenfeld PY, Gotch FA, Sargent JA, Wolfson M, Humphreys MH: Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int 14: 491, 1978

    PubMed  CAS  Google Scholar 

  88. Acchiardo SA, Moore LM, Latour PA: Malnutrition as the main factor in morbidity and mortality of hemodialysis patients. Kidney Int 24(Suppl 16): S199, 1983

    Google Scholar 

  89. Dumler F, Zasuwa G: Factors influencing protein catabolic rate in chronic maintenance hemodialysis patients. Kidney Int 37: 294, 1990

    Google Scholar 

  90. Lowrie EG, Lew NL, Liu Y: The effect of differences in urea reduction ratio (URR) on death risk in hemodialysis patients: a preliminary analysis, Memo to National Medical Care DSD Medical Directors, 1991, November 5: 1

    Google Scholar 

  91. Schulman G, Wingard RL, Hutchison RL, Lawrence P, Hakim RM: The effects of recombinant human growth hormone and intradialytic parenteral nutrition in malnourished hemodialysis patients. Am J Kidney Dis 21: 527, 1993

    PubMed  CAS  Google Scholar 

  92. Held PJ, Port FK, Garcia J, Gaylin DS, Levin NW, Agodoa L: Hemodialysis prescription and delivery in the US: results from USRDS Case Mix Study. (Abstract) Am Soc Nephrol 2: 328, 1991

    Google Scholar 

  93. Herrmann FR, Safran C, Levkoff SE, Minaker KL: Serum albumin level on admission as a predictor of death, length of stay, and readmission. Arch Intern Med 152: 125, 1992

    PubMed  CAS  Google Scholar 

  94. Murray MJ, Marsh HM, Wochos DN, Moxness KE, Offord KP, Callaway CV: Nutritional assessment of intensive-care unit patients. Mayo Clin Proc 63: 1106, 1988

    PubMed  CAS  Google Scholar 

  95. Pollak AJ, Strong RM, Gribbon R, Shah H: Lack of predictive value of the APACHE II score in hypoalbuminemic patients. J Parent Ent Nutr 15: 313, 1991

    CAS  Google Scholar 

  96. Gentric A, Cledes J: Immediate and long-term prognosis in acute renal failure in the elderly. Nephrol Dial Transplant 6: 86, 1991

    PubMed  CAS  Google Scholar 

  97. Lindsay RM, Spanner E: A hypothesis: The protein catabolic rate is dependent upon the type and amount of treatment in dialyzed uremic patients. Am J Kidney Dis 13: 382, 1989

    PubMed  CAS  Google Scholar 

  98. Venning MC, Faragher EB, Harty JC et al.: The relationship between Kt/V and nPCR in haemodialysis patients in cross sectional studies is mathematical coupling. (Abstract) Am Soc Nephrol 4: 393, 1993

    Google Scholar 

  99. Poignet JL, Chauveau P, Desassis JF, Puget J: Adequacy of hemodialysis and nutrition: evaluation of an online urea monitor. (Abstract) Am Soc Nephrol 5: 525, 1994

    Google Scholar 

  100. Mabuchi H, Nakahashi H: Underestimation of serum albumin by the bromcresol purple method and a major endogenous ligand in uremia. Clin Chim Acta 167: 89, 1993

    Google Scholar 

  101. Gault MH, Campbell N, Purchase L, Longerich L: Interdialysis weight gain with low predialysis concentrations of proteins and lipids and high end-dialysis values after weight removal. (Abstract) Am Soc Nephrol 4: 347, 1993

    Google Scholar 

  102. Depner TA, Cheer AY: Modeling urea kinetics with two vs three BUN measurements: A critical comparison. Trans Am Soc Artif Intern Organs 35: 499, 1989

    CAS  Google Scholar 

  103. Gotch FA, Keen ML: Care of the patient on hemodialysis. in Introduction to Dialysis, edited by Cogan MG, Garovoy MR, New York, Churchill Livingstone, 1985, p 73

    Google Scholar 

  104. Depner TA, Daugirdas JT: Formulas for prediction of normalized protein catabolic rate. J Am Soc Nephrol 1996. In press

    Google Scholar 

  105. Daugirdas JT: The post:pre-dialysis plasma urea nitrogen ratio to estimate Kt/V and NPCR: validation. Int J Artif Organs 12: 420, 1989

    PubMed  CAS  Google Scholar 

  106. Lindsay RM, Spanner E, Heidenheim P, Liftdsay S, LeFebvre JMJ: The influence of dialysis membrane upon protein catabolic rate. Trans Am Soc Artif Intent Organs 37: M134, 1991

    CAS  Google Scholar 

  107. Gutierrez A, Alvestrand A, Wahren J, Bergstrom J: Effect of in vivo contact between blood and dialysis membranes on protein catabolism in humans. Kidney Int 38: 487, 1990

    PubMed  CAS  Google Scholar 

  108. Gutierrez A, Bergstrom J, Alvestrand A: Protein catabolism in sham-hemodialysis: the effect of different membranes. Clin Nephrol 38: 20, 1992

    PubMed  CAS  Google Scholar 

  109. Himmelfarb J: Infection in hemodialysis patients: dodialysis membranes play a role? Semin Dial 5: 108, 1992

    Google Scholar 

  110. Schulman G, Fogo A, Gung A, Badr K, Hakim R: Complement activation retards resolution of acute ischemic renal failure in the rat. Kidney Int 40: 1069, 1991

    PubMed  CAS  Google Scholar 

  111. Hakim RM, Wingard RL, Lawrence P, Parker RA, Schulman G: Use of biocompatible membranes improves outcome and recovery from acute renal failure. (Abstract) Am Soc Nephrol 3: 367, 1992

    Google Scholar 

  112. Seres DS, Strain GW, Hashim SA, Goldberg IJ, Levin NW: Improvement of plasma lipoprotein profiles during high-flux dialysis. Am Soc Nephrol 3: 1409, 1993

    CAS  Google Scholar 

  113. Josephson MA, Fellner SK, Dasgupta A: Improved lipid profiles in patients undergoing high-flux hemodialysis. Am J Kidney Dis 20: 361, 1992

    PubMed  CAS  Google Scholar 

  114. Parthasarathy S, Steinberg D, Witztum JL: The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med 43: 219, 1992

    PubMed  CAS  Google Scholar 

  115. Chanard J, Brunois JP, Melin JP, Lavaud S, Toupance O: Long-term results of dialysis therapy with a highly permeable membrane. Artif Organs 6: 261, 1982

    Article  PubMed  CAS  Google Scholar 

  116. Hornberger JC, Chernew ME, Petersen J, Garberv AM: A multivariate analysis of mortality and hospital admissions with high-flux dialysis. Am Soc Nephrol 3: 1227, 1992

    CAS  Google Scholar 

  117. Levin NW, Dumler F, Zasuwa G, Stalla K: Mortality comparison between conventional and high flux dialysis. (Abstract) Am Soc Nephrol 1: 365, 1990

    Google Scholar 

  118. Levin NW, Zasuwa GA, Dumler F: Effect of membrane type on causes of death in hemodialysis patients. (Abstract) Am Soc Nephrol 2: 335, 1991

    Google Scholar 

  119. Pollak VE, Kant S, Pesce A: A recent decrease in the dialysis case fatality rate: Is there an explanation? (Abstract) Am Soc Nephrol 2: 345, 1991

    Google Scholar 

  120. DeOreo PB: Analysis of time, nutrition, and Kt/V as risk factors for mortality in dialysis patients. (Abstract) Am Soc Nephrol 2: 321, 1991

    Google Scholar 

  121. Martin-Malo A, Castillo D: Adequacy of dialysis: is it really determined by the type of membrane and buffer? (Abstract) Proc Eur Dial Transplant Assoc 147, 1993

    Google Scholar 

  122. Hakim RM, Stannard D, Port FK, Held PJ: The effect of the dialysis membrane on mortality of chronic hemodialysis patients. (Abstract) Am Soc Nephrol 5: 451, 1994

    Google Scholar 

  123. Hakim RM, Wingard RL, Ikizler TA et al.: Interrelationships of dialyzer biocompatibility with nutritional parameters. (Abstract) Am Soc Nephrol 5: 451, 1994

    Google Scholar 

  124. Vanholder RC, DeSmet RV, Ringoir SM: Assessment of urea and other uremic markers for quantification of dialysis efficacy. Clin Chem 38: 1429, 1992

    PubMed  CAS  Google Scholar 

  125. Bassingthwaighte JB, Noodleman L, van der Vusse G, Little SE, Glatz JFC, Reneman RS: Albumin-facty-acid-endothelial membrane interactions and fatty acid transport in the heart. Fed Proc 46: 686, 1987

    Google Scholar 

  126. Besseghir K, Mosig D, Roch-Ramel F: Facilitation by serum albumin of renal tubular secretion of organic anions. Am J Physiol 256: F475, 1989

    PubMed  CAS  Google Scholar 

  127. Gulyassy PF, Depner TA, Shearer GC: Comparison of binding by concentrated peritoneal dialysate and serum. ASAIO J 39: M569, 1993

    PubMed  CAS  Google Scholar 

  128. Morachiello P, Ladini S, Fracasso A et al.: Combined hemodialysis-hemoperfusion in the treatment of secondary hyperparathyroidism of uremic patients. Biochem Pharmacol 9: 148, 1991

    CAS  Google Scholar 

  129. Stange J, Ramlow W, Mitzner S, Schmidt R, Klinkmann H: Dialysis against a recycled albumin solution enalbes the removal of albumin-bound toxins. Artif Organs 17: 809, 1993

    Article  PubMed  CAS  Google Scholar 

  130. Charra B: Importance of hypertension to survival on long dialysis. Personal communication, 1994

    Google Scholar 

  131. Babb AL, Popovich RP, Christopher TC, Scribner BH: The genesis of the middle molecule hypothesis. Trans Am Soc Artif Intern Organs 17: 81, 1971

    PubMed  CAS  Google Scholar 

  132. Charra B, Laurent G, Calemard E et al.: Survival in dialysis and blood pressure control. Contrib Nephrol 106: 179, 1994

    PubMed  CAS  Google Scholar 

  133. Luik A, Charra B, Katzarski K et al.: Blood pressure control and fluid state in patients on long treatment time dialysis. (Abstract) Am Soc Nephrol 5: 521, 1994

    Google Scholar 

  134. vonAlbertini B, Miller JH, Gardner PW, Shinaberger JH: Performance characteristics of high flux haemodiafiltration. Proc Eur Dial Transplant Assoc 21: 447, 1985

    Google Scholar 

  135. Velasquez MT, von Albertini B, Lewv SQ, Moore J, Bosch JP: Shorter treatment time with adequate highly efficient hemodialysis is not associated with higher incidence of hypertension in ESRD patients. (Abstract) Am Soc Nephrol 5: 532, 1994

    Google Scholar 

  136. Gennari FJ, Rimmer JM: Acid-base disorders in end-stage renal disease. Semin Dial 3: 81, 1990

    Google Scholar 

  137. Heineken FG: Brady-Smith M, Haynie J, Van Stone JC: Prescribing dialysate bicarbonate concentrations for hemodialysis patients. Int J Artif Organs 11: 45, 1988

    PubMed  CAS  Google Scholar 

  138. Thews O, Hutten H: A comprehensive model of the dynamic exchange processes during hemodialysis. Med Prog Technol 16: 145, 1990

    PubMed  CAS  Google Scholar 

  139. Bushinsky DA, Lam BC, Nespeca R, Sessler NE, Grynpas MD: Decreased bone carbonate content in response to metabolic, but not respiratory, acidosis. Am J Physiol 265: F530, 1993

    PubMed  CAS  Google Scholar 

  140. Mitch WE, May RC, Maroni BJ, Druml W: Protein and amino acid metabolism in uremia: influence of metabolic acidosis. Kidney Int 27(Suppl): S205, 1989

    Google Scholar 

  141. Oettinger CW, Oliver JC: Normalization of uremic acidosis in hemodialysis patients with a high bicarbonate dialysate. Am Soc Nephrol 3: 1804, 1993

    CAS  Google Scholar 

  142. Schneditz D, Holzer H, Daugirdas JT: A nomogram approach to estimate equilibrated post-dialysis BUN and whole-body (2-pool) Kt/V in hemodialysis. Proc Eur Dial Transplant Assoc-Eur Renal Assoc 213, 1994

    Google Scholar 

  143. Foley RJ et al.: Left ventricular hypertrophy in dialysis patients. Semin Dial 5: 34, 1992

    Google Scholar 

  144. Zager P, Campbell M, Skipper B et al.: Effect of blood pressure on mortality in hemodialysis patients. (Abstract) Am Soc Nephrol 5: 534, 1994

    Google Scholar 

  145. Lowrie EG, Laird NM Cooperative dialysis study. Kidney Int 23: S1, 1983

    Google Scholar 

  146. Boen ST, Haagsman-Schouten WAG, Bimie RJ: Long-term peritoneal dialysis and a peritoneal dialysis-index. Dial Transplant 7: 377, 1978

    Google Scholar 

  147. Teehan BP, Schleifer CR, Sigler MH, Gilgore GS: A quantitative approach to the CAPD prescription. Perit Dial Bull 5: 152, 1985

    Google Scholar 

  148. Blumenkrantz MJ, Kopple HD, Moran JK: Coburn JW: Metabolic balance studies and dietary protein requirements in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 21: 849, 1982

    PubMed  CAS  Google Scholar 

  149. Lysaght MJ, Pollock CA, Hallet MD, Ibels LS, Farrell PC: The relevance of urea kinetic modeling to CAPD. Trans Am Soc Artif Intern Organs 35: 784, 1989

    CAS  Google Scholar 

  150. Tattersall JE, Doyle S, Greenwood RN, Farrington K: Kinetic modelling and underdialysis in CAPD patients. Nephrol Dial Transplant 8: 535, 1993

    PubMed  CAS  Google Scholar 

  151. Selgas R, Bajo MA, Fernandez-Reyes MJ, Bosque E, Lopez-Revuelta K, Jimenez C, Borrego F, de Alvaro F: An analysis of adequacy of dialysis in a selected population on CAPD for over 3 years: the influence of urea and creatinine kinetics. Nephrol Dial Transplant 8: 1244, 1993

    PubMed  CAS  Google Scholar 

  152. Keshaviah PR, Nolph KD, Van Stone JC: The peak concentration hypothesis: a urea kinetic approach to comparing the adequacy of continuous ambulatory peritoneal dialysis (CAPD) and hemodialysis. Perit Dial Int 9: 257, 1989

    PubMed  CAS  Google Scholar 

  153. Teehan BP, Schleifer CR, Brown JM, Sigler MH, Raimondo J: Urea kinetic analysis and clinical outcome on CAPD. A five year longitudinal study. Adv Perit Dial 6: 181, 1990

    PubMed  CAS  Google Scholar 

  154. Blake PG, Sombolos K, Abraham G, Weissgarten J, Pemberton R, Chu GL, Oreopoulos DG Lack of correlation between urea kinetic indices and clinical outcomes in patients on continuous ambulatory peritoneal dialysis. Kidney Int 39: 700, 1991

    PubMed  CAS  Google Scholar 

  155. Brandes JC, Piering WF, Beres JA, Blumenthal SS, Fritsche C: Clinical outcome of continuous ambulatory peritoneal dialysis predicted by urea and creatinine kinetics. Am Soc Nephrol 2: 1430, 1992

    CAS  Google Scholar 

  156. Keshaviah PR, Nolph KD, Prowant B, Moore H, Ponferrada L, Van Stone J, Twardowski ZJ, Khanna R: Defining adequacy of CAPD with urea kinetics. Adv Perit Dial 6: 173, 1990

    PubMed  CAS  Google Scholar 

  157. Goodship THJ, Ward MK, Wilkinson R: Urea kinetic modelling (UKM) and nutritional status in CAPD. Am Soc Nephrol 2: 361, 1991

    Google Scholar 

  158. Lameire NH, Vanholder R, Veyt D, Lambert VMC, Ringoir S: A longitudinal, five year survey of urea kinetic parameters in CAPD patients. Kidney Int 42: 426, 1992

    PubMed  CAS  Google Scholar 

  159. Blake PG, Balaskas E, Blake R, Oreopoulos DG: Urea kinetics has limited relevance in assessing adequacy of dialysis in CAPD. Adv Perit Dial 8: 65, 1992

    PubMed  CAS  Google Scholar 

  160. Soreide R, Dracup B, Svarstad E, Iversen BM: Increased total body fat during PD treatment. Adv Perit Dial 8: 173, 1992

    PubMed  CAS  Google Scholar 

  161. Keshaviah PR: Presentation 14th Annual Conference on Peritoneal Dialysis, Orlando, January 1994

    Google Scholar 

  162. Schmidt R, Dumler F, Cruz C: Indirect measures of total body water may confound precise assessment of peritoneal dialysis adequacy. Perit Dial Int 13(Suppl 2): S224, 1993

    Google Scholar 

  163. Odar-Cederlof I, Ericsson F, Eriksson CG, Kjellstrand CM: Oral antipyrin, a simple, accurate and non-bloody way of measuring total body water in hemodialysis patients. Am Soc Nephrol 2: 342, 1991

    Google Scholar 

  164. Dumler F, Schmidt R, Cruz C: Abbreviated method for urea kinetic modeling in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 13(Suppl 2): S50, 1993

    Google Scholar 

  165. Burkart JM, Jordan JR, Rocco MV: Assessment of dialysis dose by measured clearance versus extrapolated data. Perit Dial Int 13: 184, 1993

    PubMed  CAS  Google Scholar 

  166. Bergstrom J, Furst P, Alvestrand A, Lindholm B: Protein and energy intake, nitrogen balance and nitrogen losses in patients treated with continuous ambulatory peritoneal dialysis. Kidney Int 44: 1048, 1993

    PubMed  CAS  Google Scholar 

  167. Randerson DH, Chapman GV, Farrell PC: Amino acid and dietary status in long-term CAPD patients. in Peritoneal Dialysis, edited by Atkins RC, Farrell PC, Thomson N, Edinburgh, Churchill-Livingstone, 1981, p 171

    Google Scholar 

  168. Borah MH, Schoenfeld PY, Gotch FA, Sargent JA, Wolson M, Humphreys MH: Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int 14: 491, 1978

    PubMed  CAS  Google Scholar 

  169. Kjeldahl J: Neue Methode zur Bestimmung des Stick-stoffs in organischen Körpers. Z Analyt Chem 22: 366, 1883

    Google Scholar 

  170. Keshaviah PR, Nolph KD: Protein catabolic rate calculations in CAPD patients. Trans Am Soc Artif Intern Organs 37: M400, 1991

    CAS  Google Scholar 

  171. Harty JC, Boulton H, Curwell J, Heelis N, Uttley L, Venning MC, Gokal R: The normalized protein catabolic rate is a flawed marker of nutrition in CAPD patients. Kidney Int 45: 103, 1994

    PubMed  CAS  Google Scholar 

  172. Burton PR, Walls J: Selection-adjusted comparison of life expectancy of patients on continuous ambulatory peritoneal dialysis, haemodialysis and renal transplantation. Lancet 1: 1115, 1997

    Google Scholar 

  173. Posen G, Arbus G, Hutchinson T, Jeffery J: Survival comparison of adult non diabetic patients treated with either hemodialysis or CAPD for end-stage renal failure. Perit Dial Bull 7: 78, 1987

    Google Scholar 

  174. Maiorca R, Cancarini G, Manili L, Camerini C, Brunori G: Life table analysis of patient and method survival in continuous ambulatory peritoneal dialysis and hemodialysis after six years’ experience, in Advances in CAPD, edited by Khanna R, Nolph KD, Prowant B et al., Toronto, University of Toronto Press, 1986, p 27

    Google Scholar 

  175. US Renal Data System: USRDS 1991 Annual Data Report, The National Institute of Health, National Institures of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 1991

    Google Scholar 

  176. Lunde NM, Port FK, Wolfe RA, Guire KE: Comparison of mortality risk by choice of CAPD versus hemodialysis among elderly patients. Adv Perit Dial 7: 68, 1991

    PubMed  CAS  Google Scholar 

  177. Nelson CB, Port FK: Dialysis patient survival: evaluation of CAPD vs HD using 3 techniques. Perit Dial Int (Suppl 1): 144, 1992

    Google Scholar 

  178. Depner TA: Quantifying hemodialysis and peritoneal dialysis: examination of the Peak Concentration Hypothesis. Semin Dial 7: 315, 1994

    Google Scholar 

  179. Rottembourg J, Issad B, Gallego JL et al.: Evolution of residual renal functions in patients undergoing maintenance hemodialysis or continuous ambulatory’ peritoneal dialysis. Proc Eur Dial Transplant Assoc 19: 397, 1982

    Google Scholar 

  180. Cancarini GC, Brunori G, Camerini C, Brasa S, Manili L, Maiorca R: Renal function recovery and maintenance of residual diuresis in CAPD and hemodialysis. Perit Dial Bull 6: 76, 1986

    Google Scholar 

  181. Ballardie F, Kerr D, Tennent G et al.: Haemodialysis versus CAPD: equal predisposition to amyloidosis? Lancet 1: 793, 1986

    Google Scholar 

  182. Keshaviah P: Urea kinetic and middle molecule approaches to assessing the adequacy of hemodialysis and CAPD. Kidney Int 43(Suppl 40): S28, 1993

    Google Scholar 

  183. Mitch WE, Jurkovita C, England BK: Mechanisms that cause protein and amino acid metabolism in uremia. Am J Kidney Dis 91, 1993

    Google Scholar 

  184. Hakim RM: Clinical implications of hemodialysis membrane biocompatibility. Kidney Int 44: 484, 1993

    PubMed  CAS  Google Scholar 

  185. Lindholm B, Bergstrom J: Nutritional aspects of peritoneal dialysis. Kidney Int 42(Suppl 38): S165, 1992

    Google Scholar 

  186. Blake PG: Problems predicting continuous ambulatory peritoneal dialysis outcomes with small solute clearances. Perit Dial Int 13(Suppl 2): S209, 1993

    Google Scholar 

  187. Teehan BP, Schleifer CR, Brown J: Urea kinetic modeling is an appropriate assessment of adequacy. Semin Dial 5: 189, 1992

    Google Scholar 

  188. Goodship THJ, Passlick-Deetjen J, Ward MK, Wilkinson R: Adequacy of dialysis and nutritional status in CAPD. Nephrol Dial Transplant 8: 1366, 1993

    PubMed  CAS  Google Scholar 

  189. Churchill DN, Thorpe K, Taylor DW, Keshaviah P: Adequacy of peritoneal dialysis. Am Soc Nephrol 5: 439, 1994

    Google Scholar 

  190. Cruz C, Dumler F, Schmidt R, Gotch F: Enhanced peritoneal dialysis delivery with PD-Plus™. Adv Perit Dial 8: 288, 1992

    PubMed  CAS  Google Scholar 

  191. Keen M, Lipps B, Gotch F: The measured creatinine generation rate in CAPD suggests only 78% of prescribed dialysis is delivered. Adv Perit Dial 9: 73, 1993

    PubMed  CAS  Google Scholar 

  192. Warren PJ, Brandes JC: Compliance with the peritoneal dialysis prescription is poor. Am Soc Nephrol 4: 1627, 1994

    CAS  Google Scholar 

  193. Bergstrom J, Alvestrand A, Lindholm B, Tranacus A: Relationship between KT/V and protein catabolic rate is different in continuous peritoneal dialysis and haemodialysis patients. Am Soc Nephrol 2: 358, 1991

    Google Scholar 

  194. Harty JC, Farragher B, Boulton H et al.: Is the correlation between the normalised protein catabolic rate (NPCR) and Kt/V the result of mathematical coupling? Am Soc Nephrol 4: 407, 1993

    Google Scholar 

  195. Gotch FA: Dependence of normalized protein catabolic rate on Kt/V in continuous ambulatory peritoneal dialysis: not a mathematical artifact. Perit Dial Int 13: 173, 1993

    PubMed  CAS  Google Scholar 

  196. Stein A, Walls J: The correlation between Kt/V and protein catabolic rate — a self-fulfilling prophecy. Nephrol Dial Transplant 9: 743, 1994

    PubMed  CAS  Google Scholar 

  197. Blake PG: Dependence of normalized protein catabolic rate on Kt/V in CAPD: not a mathematical artifact. Perit Dial Int 14: 405, 1994

    PubMed  CAS  Google Scholar 

  198. Lindsay RM, Spanner E, Heidenheim P, Kortas C, Blake PG: PCR, Kt/V and membrane. Kidney Int 43(Suppl 1): S268, 1993

    Google Scholar 

  199. Blake PG, Lindsay RM, Spanner E, Heidenheim P, Baird J, Allison M, Oreopoulos DG: Factors modifying the relationship between Kt/V urea and normalized protein catabolic rate (PCRN) in CAPD. Am Soc Nephrol 4: 398, 1993

    Google Scholar 

  200. Ronco C, Conz P, Agostini F, Bosch JP, Lew SQ, La Greca G: The concept of adequacy in peritoneal dialysis. Perit Dial Int 14: S93, 1994

    Google Scholar 

  201. Twardowski ZJ, Nolph KD: Peritoneal dialysis: how much is enough? Semin Dial 1: 75, 1988

    Google Scholar 

  202. Twardowski ZJ, Nolph KD, Khanna R et al.: Peritoneal equilibration test. Perit Dial Bull 7: 138, 1987

    Google Scholar 

  203. Blake PG, Balaskas EV, Izatt S, Oreopoulos DG: Is total creatinine clearance a good predictor of clinical outcomes in continuous ambulatory peritoneal dialysis? Perit Dial Int 12: 353, 1992

    PubMed  CAS  Google Scholar 

  204. Larpent L, Verger C: The need for using an enzymatic colorimetric assay in creatinine determination of peritoneal dialysis solutions. Perit Dial Int 10: 89, 1990

    PubMed  CAS  Google Scholar 

  205. Nolph KD, Moore HL, Twardowski ZJ et al.: Cross-sectional assessment of weekly urea and creatinine clearances in patients on continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 38: M139, 1992

    CAS  Google Scholar 

  206. du Bois D, du Bois EF: A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17: 863, 1916

    Google Scholar 

  207. Keshaviah PR, Nolph KD, Moore HL, Prowant B, Emerson PF, Meyer M, Twardowski ZJ, Khanna R, Ponferrada L, Collins A: Lean body mass estimation by creatinine kinetics. Am Soc Nephrol 4: 1475, 1994

    CAS  Google Scholar 

  208. Mitch WE, Collier VU, Walser M: Creatinine metabolism in chronic renal failure. Clin Sci 58: 327, 1980

    PubMed  CAS  Google Scholar 

  209. Brandes JC, Piering WF, Beres JA: A method to assess efficacy of CAPD: preliminary results. Adv Perit Dial 6: 192, 1990

    PubMed  CAS  Google Scholar 

  210. Rocco MV, Burkart JM: The efficacy number as a predictor of morbidity and mortality in peritoneal dialysis patients. Am Soc Nephrol 4: 1184, 1993

    CAS  Google Scholar 

  211. Nolph KD, Twardowski ZJ, Keshaviah PR: Weekly clearances of urea and creatinine on CAPD and NIPD. Perit Dial Int 12: 298, 1992

    PubMed  CAS  Google Scholar 

  212. Holley JL, Piraino B: Careful patient selection and dialysis prescription are required for effective nightly intermittent peritoneal dialysis. Perit Dial Int 14: 155, 1994

    PubMed  CAS  Google Scholar 

  213. Piraino B, Bender F, Bernardini J: A comparison of clearances on tidal peritoneal dialysis and intermittent peritoneal dialysis. Perit Dial Int 24: 145, 1994

    Google Scholar 

  214. Balaskas E, Izatt S, Chu M, Oreopoulos DG: Tidal volume peritoneal dialysis (TVPD) versus intermittent peritoneal dialysis. Perit Dial Int 3(Suppl): S65, 1993

    Google Scholar 

  215. Verger C, Larpent L, Dumontet M: Prognostic values of peritoneal equilibration curves in CAPD patients, in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich and Assoc Inc, 1986, p 88

    Google Scholar 

  216. Heimburger O, Waniewski J, Werynski A, Sun Park M, Lindholm B: Dialysate to plasma solute concentration (D/P) versus peritoneal transport parameters in CAPD. Nephrol Dial Transplant 9: 47, 1994

    PubMed  CAS  Google Scholar 

  217. Blake PG, Flowerdew G, Blake RM, Oreopoulos DG: Serum albumin in patients on continuous ambulatory peritoneal dialysis — predictors and correlations with outcomes. Am Soc Nephrol 3: 1501, 1993

    CAS  Google Scholar 

  218. Nolph KD, Moore HL, Prowant B, Twardowski ZJ, Khanna R, Camboa S, Keshaviah P: Continuous ambulatory peritoneal dialysis with a high flux membrane. ASAIO J 39: 904, 1993

    PubMed  CAS  Google Scholar 

  219. Blake PG, Sombolos K, Izatt S, Oreopoulos DG: A highly permeable membrane is an adverse risk factor in CAPD. Clin Invest Med 14(Suppl): 792, 1991

    Google Scholar 

  220. Blake PG, Abraham G, Sombolos K, Izatt S, Weissgarten J, Ayiomamitis A, Oreopoulos DG: Changes in peritoneal membrane transport rates in patients on long term CAPD. Adv Perit Dial 5: 3, 1989

    PubMed  CAS  Google Scholar 

  221. Passlick-Deetjen J, Chlebowski H, Koch M, Grabensee B: Changes of peritoneal membrane function during long-term CAPD. Adv Perit Dial 6: 35, 1990

    PubMed  CAS  Google Scholar 

  222. Lo W-K, Brendolan A, Prowant BF, Moore HL, Khanna R, Twardowski ZJ, Nolph KD: Changes in the peritoneal equilibration test in selected chronic peritoneal dialysis patients. Am Soc Nephrol 4: 1466, 1994

    CAS  Google Scholar 

  223. Rocco JR, Burkart JM: Changes in peritoneal tansport during the first month of peritoneal dialysis. Perit Dial Int 13: S77, 1993

    Google Scholar 

  224. Gotch F, Schoenfeld P, Gentile D: The peritoneal equilibration test is not a realistic measure of peritoneal clearance. Am Soc Nephrol 3: 361, 1992

    Google Scholar 

  225. Lindsay RM, Spanner E: The lower serum albumin does reflect nutritional status. Semin Dial 5: 215, 1992

    Google Scholar 

  226. Heimburger O, Bergstrom J, Lindholm B: Is serum albumin an index of nutritional status in continuous ambulatory peritoneal dialysis patients? Perit Dial Int 14: 108, 1994

    PubMed  CAS  Google Scholar 

  227. Young GA, Kopple J, Lindholm B et al.: Nutritional assessment of CAPD patients: an international study. Am J Kidney Dis 17: 462, 1991

    PubMed  CAS  Google Scholar 

  228. Fenton SA, Johnston N, Delmore T et al.: Nutritional assessment of continuous ambulatory peritoneal dialysis patients. Trans Am Soc Artif Intern Organs XXXIII: 650, 1987

    Google Scholar 

  229. Oreopoulos DG, Crassweller P, Katirtzoglou A et al.: Amino acids as an osmotic agent in CAPD. in Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta medica, 1979, p 335

    Google Scholar 

  230. Jones MR, Martis L, Algrim CE et al.: Amino acid solutions for CAPD; rationale and clinical experience. Miner Electrolyte Metab 18: 309, 1992

    PubMed  CAS  Google Scholar 

  231. Bruno M, Bagnis C, Marangella M et al.: CAPD with an amino acid dialysis solution: a long-term, cross-over study. Kidney Int 35: 1189, 1989

    PubMed  CAS  Google Scholar 

  232. Dombros NV, Prutis K, Tong M et al.: Six-month overnight intraperitoneal amino-acid infusion in continuous ambulatory peritoneal dialysis (CAPD) patients — no effect on nutritional status. Perit Dial Int 10: 79, 1990

    PubMed  CAS  Google Scholar 

  233. Kalil R, Jones MR, Martis L, Blake P, Anderson H, Oreopoulos DG: Modification of amino acid peritoneal dialysis fluid to decrease risk of acidosis. Perit Dial Int 14: S14, 1994

    Google Scholar 

  234. Ikizler TA, Wingard RL, Breyer JA et al.: Short-term effects of recombinant human growth hormone in CAPD patients. Kidney Int 46: 1178, 1994

    PubMed  CAS  Google Scholar 

  235. Kang DH, Lee SW, Kang SW et al.: Recombinant human growth hormone improved nutritional status of under-nourished adult CAPD patients. Am Soc Nephrol 5: 494, 1994

    Google Scholar 

  236. Kopple JD: The rationale for the use of growth hormone or insulin-like growth factor I in adult patients with renal failure. Miner Electrolyte Metab 18: 269, 1992

    PubMed  CAS  Google Scholar 

  237. Blake PG: Growth hormone and malnutrition in dialysis patients. Perit Dial Int 15: 210, 1995

    PubMed  CAS  Google Scholar 

  238. Fine RN: Stimulating growth in uremic children. Kidney Int 42: 188, 1992

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Jacobs C. M. Kjellstrand K. M. Koch J. F. Winchester

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Blake, P., Daugirdas, J. (1996). Quantification And Prescription General Principles. In: Jacobs, C., Kjellstrand, C.M., Koch, K.M., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-36947-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-36947-1_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3610-5

  • Online ISBN: 978-0-585-36947-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics