Skip to main content

Realistic Computational Models of Respiratory Neurons and Networks

  • Chapter

Abstract

Breathing movements in mammals result from networks of neurons in the central nervous system that produce a complex spatial and temporal pattern of rhythmic neural activity. The underlying mechanisms are not fully understood, and computational modeling is becoming an essential tool for achieving a mechanistic understanding. It is now recognized that the activity of respiratory neurons results from a complex dynamic interaction of biophysical properties of individual neurons and network mechanisms that arise from the interconnections of cells. These interactions of cellular and network processes remain difficult to investigate experimentally, however, and computational approaches that permit modeling of biologically realistic neurons and networks, in particular, provide a powerful modeling approach. Methods for modeling networks of realistic neurons incorporating biophysical properties and synaptic interactions have been developed in computational ne uroscience over the past several decades[1]–[4], and the availability of software has now made computer simulation of these realistic types of models practical [4]–[5]. In this chapter, I outline this approach and provide examples of our simulations with a first generation of realistic models of respiratory neurons and networks. These models are a significant departure from earlier models [6]–[9] of the respiratory network that have lacked many of the biophysi- cal and synaptic properties of neurons that are required to replicate the behavior of real networks. The approach outlined here can be applied to model any aspect of respiratory neural function where neurobiological realism is sought. The models I present below are designed mainly to explore mechanisms in the brainstem involved in the generation of the rhythm and pattern of neuron activity underlying the respiratory cycle. I first consider features of the organization and properties of brainstem networks that must be incorporated in the realistic models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koch, C. and I. Segev. Methods in Neuronal Modeling. From Synapses to Networks, MIT Press, Cambridge, MA, 1989.

    Google Scholar 

  2. McKenna, T., Davis, J., and S.F. Zornetzer. Single Neuron Computation, Academic Press, San Diego, CA, 1992.

    Google Scholar 

  3. Bower, J.M. (ed). Modeling the Nervous System. Trends Neurosci., 1992, vol. 15.

    Google Scholar 

  4. Bower, J. M. and D. Beeman. The Book of Genesis. Exploring Realistic Neural Models with the GEneral NEural SImulation System. Springer-Verlag, New York and TELOS, Santa Clara, CA, 1995.

    Google Scholar 

  5. DeShutter, E. A. consumer guide to neuronal modeling software. Trends Neurosci. 15: 462–464, 1992.

    Article  Google Scholar 

  6. Botros, S.M. and E.N. Bruce. Neural network implementation of the three-phase model of respiratory rhythm generation. Biol. Cybern. 63: 143–153. 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Duffin, J. A model of respiratory rhythm generation. Neuroreport 2: 623–626, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Ogilvie, M.D., Gottschalk, A., Anders, K., Richter, D.W., and A.I. Pack. A network model for respiratory rhythmogenesis. Am. J. Physiol. 32: R962–R975, 1992.

    Google Scholar 

  9. Balis. U.J., Morris, K.F., Koleski, J., and B.G. Lindsey. Simulations of a ventrolateral medullary neural network for respiratory rhythmogenesis inferred from spike train cross-correlation. Biol. Cybern. 70:311–327, 1994.

    PubMed  CAS  Google Scholar 

  10. Ezure K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog. Neurobiol. 35: 429–450, 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Bianchi, A. L., Denavit-Saubie, M., and J. Champagnat. Centrol control of breathing in mammals: Neuronal circuitry, membrane properties, and neurotransmitters. Physiological Rev. 75:1–45, 1995.

    CAS  Google Scholar 

  12. Feldman, J.L. and J.C. Smith. Neural control of respiratory pattern in mammals: An overview. In: Regulation of Breathing, edited by J.A. Dempsey and A.I. Pack. Marcel Dekker, Inc, New York, 1995, p. 39–69.

    Google Scholar 

  13. Richter, D.W., Ballanyi, K., and S. Schwarzacher. Mechanisms of respiratory rhythm generation. Curr. Opin. Neurobiol. 2: 788–793, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Smith, J.C. New computational models of the respiratory oscillator in mammals. In: Modeling and Control of Ventilation, edited by Semple, S., L. Adams, and B.J. Whipp, Plenum Press, New York.

    Google Scholar 

  15. Smith, J.C. Integration of cellular and network mechanisms in mammalian oscillatory motor circuits. Insights from the respiratory oscillator. In: Neurons, Networks, and Motor Behavior, edited by Stein, P., Grillner, S., Selverston, A.I., and D.G. Stuart. MIT Press, Cambridge, MA, (in press).

    Google Scholar 

  16. Smith, J.C., Funk, G.D., Johnson, S.M., and J.L. Feldman. Cellular and synaptic mechanisms generating respiratory rhythm: Insights from in vitro and computational studies. In: Ventral Brainstem Mechanisms and Control of Respiration and Blood Pressure, edited by O. Trouth, R. Millis, H. Kiwull-Schone, M. Schlafke. Marcel Dekker, Inc, New York, 1995, p. 463–496.

    Google Scholar 

  17. Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., and J.L. Feldman. Pre-Bötzinger Complex: A brainstem region that may generate respiratory rhythm in mammals. Science 254: 726–729, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson, S.M., Smith, J.C., Funk, G.D., and J.L. Feldman. Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J. Neurophysiol. 72: 2598–2608, 1994.

    PubMed  CAS  Google Scholar 

  19. Llinas, R. The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242: 1654–1664, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Hille, B. Ionic Channels of Excitable Membranes. 2nd ed.,Sinauer, Sunderland, MA, 1992.

    Google Scholar 

  21. Cronin, J. Mathematical Aspects of Hodgkin-Huxley Neural Theory. Cambridge Studies in Mathematical Biology, Vol. 7, Cambridge Univ. Press, Cambridge, Eng., 1987.

    Google Scholar 

  22. Nelson, M. and J. Rinzel. The Hodgkin—Huxley Model. In: The Book of Genesis. Exploring Realistic Neural Models with the GEneral NEural Simulation System, edited by J. M. Bower, and D. Beeman, Springer-Verlag, New York and TELOS, Santa Clara, CA, 1995, p. 29–51.

    Google Scholar 

  23. Hodgkin, A.L. and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117: 500–544, 1952.

    PubMed  CAS  Google Scholar 

  24. Huguenard, J. R. and D.A. McCormick. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68: 1373–383, 1992.

    PubMed  CAS  Google Scholar 

  25. Segev, I. Temporal interactions between post-synaptic potentials. In: The Book of Genesis. Exploring Realistic Neural Models with the GEneral NEural SImulation System, edited by J. M. Bower, and D. Beeman. Springer-Verlag, New York and TELOS, Santa Clara. CA, 1995, pp. 83–101.

    Google Scholar 

  26. Segev, I. Single neurone models: oversimple, complex, and reduced. Trends Neurosci. 15: 414–421, 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Smith, J.C., Greer, J., Liu, G., and J.L. Feldman. Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity. J. Neurophysiol. 64: 1149–1169, 1990.

    PubMed  CAS  Google Scholar 

  28. De Schutter, E. and J.M. Bower. An active membrane model of the cerebellar purkinje cell I. Simulation of current clamps in slice. J. Neurophysiol. 71: 375–400, 1994.

    PubMed  Google Scholar 

  29. Wilson, C.J. Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons. In: Single Neuron Computation, edited by T. McKenna, J. Davis, and S.F. Zornetzer, Academic Press. San Diego, CA, 1992, p. 141–172.

    Google Scholar 

  30. De Schutter, E. Alternative equations for the molluscan ion currents described by Connor and Stevens. Brain Res. 382:134–138, 1986.

    Article  PubMed  Google Scholar 

  31. Wang, X.-J., Rinzel, J., and M.A. Rogawski. A model of the T-type calcium current and the low-threshold spike in thalamic neurons. J. Neurophysiol. 66: 839–850, 1991.

    PubMed  CAS  Google Scholar 

  32. Traub, R.D, Wong, R.K.S., Miles, R., and H. Michelson. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data of intrinsic conductances. J. Neurophysiol. 66: 635–650, 1991.

    PubMed  CAS  Google Scholar 

  33. Yamada, W.M., Koch, C., and P.R. Adams. Multiple channels and calcium dynamics. In: Methods in Neuronal Modeling. From Synapses to Networks, edited by C. Koch, and I. Segev, MIT Press, Cambridge, MA, 1989, p. 97–133.

    Google Scholar 

  34. De Schutter, E. Computer software for development and simulation of compartmental models of neurons. Comput. Biol. Med. 19: 71–78, 1989.

    Article  PubMed  Google Scholar 

  35. Smith, J.C. Computational models of the respiratory oscillatory in mammals. Soc. Neurosci. Abstr. 20: 1202, 1994.

    Google Scholar 

  36. Smith J.C. A model for developmental transformations of the respiratory oscillator in mammals (Abstr.) FASEB J.: 8:A394, 1994.

    Google Scholar 

  37. Smith J.C., Ballanyi, K., and D.W. Richter. Whole-cell patch-clamp recordings from respiratory neurons in neonatal rat brainstem in vitro. Neurosci. Lett., 1992; 134: 153–156.

    Article  PubMed  CAS  Google Scholar 

  38. Smith, J.C. The network generating respiratory rhythm and pattern in medullary slices in vitro. Experimental analysis and computational model. Soc. Neurosci. Abs. 21:689, 1995.

    Google Scholar 

  39. Richter, D.W. and K.M. Spyer. Cardiorespiratory control. In: Central Regulation of Autonomic Functions, edited by A.D. Lowey, and K.M. Spyer. Oxford Univ. Press, New York, 1990, p. 189–207.

    Google Scholar 

  40. Schwarzacher, S.W., Wilhelm, Z., Anders, K., and D.W. Richter. The medullary respiratory network in the rat. J. Physiol. London 435: 631–644, 1991.

    PubMed  CAS  Google Scholar 

  41. Schwarzacher, S.W., Smith, J.C., and D.W. Richter. Pre-Bötzinger Complex in the cat. J. Neurophysiol. 73:1452–161, 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press

About this chapter

Cite this chapter

Smith, J.C. (1996). Realistic Computational Models of Respiratory Neurons and Networks. In: Bioengineering Approaches to Pulmonary Physiology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-34964-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34964-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45370-0

  • Online ISBN: 978-0-585-34964-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics