Skip to main content

The Risch Integration Algorithm

  • Chapter

Abstract

When solving for an indefinite integral, it is not enough simply to ask to find an antiderivative of a given function f(x). After all, the fundamental theorem of integral calculus gives the area function A(x)=∭x a f(t) dt as an antiderivative of f (x). One really wishes to have some sort of closed expression for the antiderivative in terms of well-known functions (e.g. sin(x), e x, log(x)) allowing for common function operations (e.g. addition, multiplication, composition). This is known as the problem of integration in closed form or integration in finite terms. Thus, one is given an elementary function f(x), and asks to find if there exists an elementary function g(x) which is the antiderivative of f(x) and, if so, to determine g(x)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Baddoura, “Integration in Finite Terms and Simplification with Dilogarithms: a Progress Report,” pp. 166–171 in Proc. Computers and Math., ed. E. Kaltofen, S.M. Watt, Springer-Verlag (1989).

    Google Scholar 

  2. R.J. Bradford, “On the Computation of Integral Bases and Defects of Integrity,” Ph.D. Thesis, Univ. of Bath, England (1988).

    Google Scholar 

  3. M. Bronstein, “Simplification of Real Elementary Functions,” pp. 207–211 in Proc. ISSAC’ 89, ed. G.H. Gnnet, ACM Press (1989).

    Google Scholar 

  4. M. Bronstein, “The Transcendental Risch Differential Equation,” J. Symbolic Comp., 9(1) pp. 49–60 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bronstein, “Integration of Elementary Functions,” J. Symbolic Comp., 9(2) pp. 117–173 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Bronstein, “A Unification of Liouvillian Extensions,” Appl. Alg. in E.C.C., 1(1) pp. 5–24 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  7. G.W. Cherry, “Integration in Finite Terms with Special Functions: the Error Function,” J. Symbolic Comp., 1 pp. 283–302 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  8. G.W. Cherry, “Integration in Finite Terms with Special Functions: the Logarithmic Integral,” SIAM J. Computing, 15 pp. 1–21 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  9. J.H. Davenport, “Integration Formelle,” IMAG Res. Rep. 375, Univ. de Grenoble (1983).

    Google Scholar 

  10. J.H. Davenport, “The Risch Differential Equation Problem,” SIAM J. Computing, 15 pp. 903–918 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer-Verlag (1980).

    Google Scholar 

  12. E. Kaltofen, “A Note on the Risch Differential Equation,” pp. 359–366 in Proc. EUROSAM’ 84, Lecture Notes in Computer Science 174, ed. J. Fitch, Springer-Verlag (1984).

    Google Scholar 

  13. A. Ostrowski, “Sur l’integrabilite elementaire de quelques classes d’expressions,” Commentaai Math. Helv., 18 pp. 283–308 (1946).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Riscn, “On the Integration of Elementary Functions which are built up using Algebraic Operations,” Report SP-2801/002/00. Sys. Dev. Corp., Santa Monica, CA (1968).

    Google Scholar 

  15. R. Riscn, “The Problem of Integration in Finite Terms,” Trans. AMS, 139 pp. 167–189 (1969).

    Google Scholar 

  16. R. Risch, “The Solution of the Problem of Integration in Finite Terms,” Bull. AMS, 76 pp. 605–608 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Risch, “Algebraic Properties of the Elementary Functions of Analysis,” Amer. Jour. of Math., 101 pp. 743–759 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  18. J.F. Ritt, Integration in Finite Terms, Columbia University Press, New York (1948).

    MATH  Google Scholar 

  19. M. Rosenlicht, “Integration in Finite Terms,” Amer. Math. Monthly, 79 pp. 963–972 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Rosenlicht, “On Liouville’s Theory of Elementary Functions,” Pacific J. Math, 65 pp. 485–492 (1976).

    MATH  MathSciNet  Google Scholar 

  21. M. Rothstein, “Aspects of Symbolic Integration and Simplification of Exponential and Primitive Functions,” Ph.D. Thesis, Univ. of Wisconsin, Madison (1976).

    Google Scholar 

  22. M. Singer, B. Saunders, and B.F. Caviness, “An Extension of Liouville’s Theorem on Integration in Finite Terms,” SIAM J. Computing, pp. 966–990 (1985).

    Google Scholar 

  23. B. Trager, “Integration of Algebraic Functions,” Ph.D. Thesis, Dept. of EECS, M.l.T. (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Geddes, K.O., Czapor, S.R., Labahn, G. (1992). The Risch Integration Algorithm. In: Algorithms for Computer Algebra. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33247-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33247-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9259-0

  • Online ISBN: 978-0-585-33247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics